Foreword |
Frequently used abbreviations |
Глава 1. | Modeling of nonbranched trunklines |
| 1.1. | About the object of modeling |
| 1.2. | Models of one-component gas transport |
| 1.3. | Models of gas mixture transport |
| 1.4. | About the modeling of multicomponent liquid flows |
| 1.5. | Models of gas–liquid mixture transport |
| | 1.5.1. | Generalized annular flow |
| | 1.5.2. | Generalized stratified flow |
| | 1.5.3. | Generalized plug flow |
| | 1.5.4. | Additional comments on the modeling of flow patterns |
| | 1.5.5. | About the modeling the flow of non-Newtonian liquid phases and suspensions |
| | 1.5.6. | Comments on the problem of correctly imposing boundary conditions in modeling the motion of gas–liquid fluids |
Глава 2. | Modeling of branched trunklines |
| 2.1. | Modeling gas mixture flows |
| 2.2. | Modeling liquid flows |
| 2.3. | Modeling flows of gas–liquid mixtures |
Глава 3. | Modeling branched open channels |
| 3.1. | Problem statement |
| 3.2. | Models of nonbranched open channels |
| 3.3. | Modeling branched open channels |
| 3.4. | Modeling heat distribution along open channel networks |
Глава 4. | Numerical analysis of mathematical models of branched pipelines and channels |
| 4.1. | General remarks |
| 4.2. | Numerical analysis of mathematical models of branched gas pipelines |
| | 4.2.1. | Finite-difference schemes of higher approximation orders |
| | 4.2.2. | Constructing completely conservative spline schemes of higher approximation orders |
| | 4.2.3. | Numerical implementation of boundary conditions in conservative finite-difference schemes |
| | 4.2.4. | Construction of fixed difference meshes that are nonuniform along the pipeline |
| | Constructionof a nonmonotonic mesh by the method of "the common middle cell" |
| | Constructionof a nonmonotonic mesh by the method of the "equality of last cells" |
| | Constructinga monotonic mesh |
| 4.3. | Numerical analysis of mathematical models of branched open channels |
| 4.4. | The method of Lagrangian particles for numerical analysis of pipeline and open channel networks |
| | 4.4.1. | Solution of the heat transfer equation in pipeline networks |
| | 4.4.1.1. | Modeling liquid flow in the absence of circular flows |
| | The General Algorithm |
| | The Pipeline Algorithm |
| | 4.4.1.2. | Modeling liquid flows with a circular flow structure |
| | The general problem setup (for one time step) |
| | Solution of the general problem |
| | The General Algorithm for the entire pipeline system with a circular flow structure |
| | Algorithm for processing an object with a circular flow structure |
| | 4.4.1.3. | Additional comments on the method of Lagrangian particles |
Глава 5. | Modeling valves, pressure controllers, and ruptures in gas pipelines |
| 5.1. | Modeling the operation of valves |
| 5.2. | Modeling the operation of GPS valve platforms equipped with interline bridges |
| 5.3. | Numerical estimate of the parameters of operation of automatic pressure controllers in gas pipeline networks |
| 5.4. | Modeling gas outflow from a high-pressure pipeline into the atmosphere |
| 5.5. | On the method of locating ruptures in multiline gas pipelines |
Глава 6. | Modeling gas compressor houses |
| 6.1. | Brief description of the object of modeling |
| 6.2. | Mathematical models of main segments of compressor houses |
| 6.3. | Modeling steady regime of natural gas transmission through a compressor shop and a compressor house |
| 6.4. | Modeling transient regimes of natural gas transmission through a compressor shop and a compressor house |
| 6.5. | Modeling compressor houses of a complicated structure |
| 6.6. | Prediction of surge phenomena in compressor shops |
| 6.7. | Optimization of steady regimes of natural gas transmission through a single compressor house |
| 6.8. | Optimization of transient regimes of natural gas transmission through an individual compressor house |
Глава 7. | Modeling trunkline and distribution gas pipeline systems |
| 7.1. | General aspects concerning the modeling and optimizing of gas transmission through pipeline networks |
| 7.2. | A method of tuning integrated GTS models to the actual parameters of pipeline networks |
| | 7.2.1. | Basic gasdynamic identified mode |
| | 7.2.2. | Computational estimate of the attained identification level in a pipeline network |
| 7.3. | Method of numerical analysis of unbalances in natural gas deliveries through pipeline networks |
Приложение 1. Calculational estimates of hydraulic friction factors in pipelines |
Приложение 2. On the "alternative" form of writing the matching conditions for gasdynamic flow parameters in a pipeline branching node |
Приложение 3. Computational estimates of the Ch\'ezy coefficient values |
| A. | Single-term formulas |
| B. | Polynomial formulas |
Bibliography |
About the authors |
Professor, Doctor of Science. Graduated cum laude from Kharkov Institute for Aviation in 1985. Until 2006
worked on defense-related subjects and also in the field of
mathematical modeling of objects of complex energy systems for
civilian purposes at the Russian Federal Nuclear Center, the All-Russian Research Institute of Experimental Physics (Sarov). From 2006 to the present is
occupied with solving problems of high-accuracy numerical simulation
of energy and pipeline transport objects for private companies.
Professional interests: numerical hydromechanics, combustion theory,
and mathematical optimization. Authors more than 200 scientific
publications, including 12 books in Russian and English.
Candidateof Science. Graduated cumlaude from
Moscow State Institute for Physics Engineering in 1998. Until 2006
worked in the field of mathematical modeling of hydrodynamic processes
in pipeline and channel systems of the fuel and energy complex at the
Russian Federal Nuclear Center, the All-Russian Research Institute of Experimental Physics
(Sarov). From 2006 to present is interested in high-accuracy
numerical simulation of energy and pipeline transport objects for
private companies. Professional interests: fluid mechanics and
numerical methods in mechanics. Authors more than 120 scientific
publications, including 7 books in Russian and English.
Доктор технических наук, профессор. Окончил с отличием Харьковский авиационный институт
в 1985 г. После окончания института до 2006 г. работал в Российском федеральном ядерном
центре — Всероссийском научно-исследовательском институте экспериментальной физики
(г. Саров) в области создания военной техники, а также в области математического моделирования
объектов сложных энергетических систем гражданского назначения. С 2006 г. по настоящее
время занимается решением проблем высокоточного численного моделирования объектов энергетики
и трубопроводного транспорта в рамках частных компаний. Профессиональные интересы:
вычислительная гидромеханика, теория горения и математическая оптимизация. Автор более
200 научных работ, в том числе 12 монографий на русском и английском языках.
Сергей Николаевич ПРЯЛОВ
Кандидат технических наук. Окончил с отличием Московский государственный инженерно-физический
институт в 1998 г. После окончания института до 2006 г. работал в Российском федеральном
ядерном центре — Всероссийском научно-исследовательском институте экспериментальной
физики (г. Саров) в области математического моделирования гидродинамических процессов
в трубопроводных и канальных системах топливно-энергетического комплекса. С 2006 г. по
настоящее время занимается высокоточным численным моделированием объектов энергетики
и трубопроводного транспорта в рамках частных компаний. Профессиональные интересы:
механика газов и жидкостей, численные методы механики. Автор более 120 научных работ,
в том числе 7 монографий на русском и английском языках.