URSS.ru Editorial URSS, Moscú. Librería on-line
Encuadernación Seleznev V.E., Pryalov S.N. Computational Fluid Dynamics of Trunklines Systems: Methods for Constructing Flow Models in Branched Trunklines and Open Channels Encuadernación Seleznev V.E., Pryalov S.N. Computational Fluid Dynamics of Trunklines Systems: Methods for Constructing Flow Models in Branched Trunklines and Open Channels
Id: 177276
69.9 EUR

Computational Fluid Dynamics of Trunklines Systems:
Methods for Constructing Flow Models in Branched Trunklines and Open Channels

URSS. 544 pp. (English). ISBN 978-5-396-00568-6.
Papel offset blanco
  • Cartoné

Resumen del libro

The monography offers a detailed analysis of the methods for constructing mathematical models of transient non-isothermal flows of gas mixtures, multicomponent fluids, and gas–liquid fluids through systems of long branched pipelines including annular sections. To enhance the presentation clarity, the proposed methods are extended to the modeling of flows of heat-conducting multicomponent liquids through long branched open channels.

Together... (Información más detallada)


Indice
top
Foreword
Frequently used abbreviations
Глава 1.Modeling of nonbranched trunklines
 1.1.About the object of modeling
 1.2.Models of one-component gas transport
 1.3.Models of gas mixture transport
 1.4.About the modeling of multicomponent liquid flows
 1.5.Models of gas–liquid mixture transport
  1.5.1.Generalized annular flow
  1.5.2.Generalized stratified flow
  1.5.3.Generalized plug flow
  1.5.4.Additional comments on the modeling of flow patterns
  1.5.5.About the modeling the flow of non-Newtonian liquid phases and suspensions
  1.5.6.Comments on the problem of correctly imposing boundary conditions in modeling the motion of gas–liquid fluids
Глава 2.Modeling of branched trunklines
 2.1.Modeling gas mixture flows
 2.2.Modeling liquid flows
 2.3.Modeling flows of gas–liquid mixtures
Глава 3.Modeling branched open channels
 3.1.Problem statement
 3.2.Models of nonbranched open channels
 3.3.Modeling branched open channels
 3.4.Modeling heat distribution along open channel networks
Глава 4.Numerical analysis of mathematical models of branched pipelines and channels
 4.1.General remarks
 4.2.Numerical analysis of mathematical models of branched gas pipelines
  4.2.1.Finite-difference schemes of higher approximation orders
  4.2.2.Constructing completely conservative spline schemes of higher approximation orders
  4.2.3.Numerical implementation of boundary conditions in conservative finite-difference schemes
  4.2.4.Construction of fixed difference meshes that are nonuniform along the pipeline
   Constructionof a nonmonotonic mesh by the method of "the common middle cell"
   Constructionof a nonmonotonic mesh by the method of the "equality of last cells"
   Constructinga monotonic mesh
 4.3.Numerical analysis of mathematical models of branched open channels
 4.4.The method of Lagrangian particles for numerical analysis of pipeline and open channel networks
  4.4.1.Solution of the heat transfer equation in pipeline networks
  4.4.1.1.Modeling liquid flow in the absence of circular flows
   The General Algorithm
   The Pipeline Algorithm
  4.4.1.2.Modeling liquid flows with a circular flow structure
   The general problem setup (for one time step)
   Solution of the general problem
   The General Algorithm for the entire pipeline system with a circular flow structure
   Algorithm for processing an object with a circular flow structure
  4.4.1.3.Additional comments on the method of Lagrangian particles
Глава 5.Modeling valves, pressure controllers, and ruptures in gas pipelines
 5.1.Modeling the operation of valves
 5.2.Modeling the operation of GPS valve platforms equipped with interline bridges
 5.3.Numerical estimate of the parameters of operation of automatic pressure controllers in gas pipeline networks
 5.4.Modeling gas outflow from a high-pressure pipeline into the atmosphere
 5.5.On the method of locating ruptures in multiline gas pipelines
Глава 6.Modeling gas compressor houses
 6.1.Brief description of the object of modeling
 6.2.Mathematical models of main segments of compressor houses
 6.3.Modeling steady regime of natural gas transmission through a compressor shop and a compressor house
 6.4.Modeling transient regimes of natural gas transmission through a compressor shop and a compressor house
 6.5.Modeling compressor houses of a complicated structure
 6.6.Prediction of surge phenomena in compressor shops
 6.7.Optimization of steady regimes of natural gas transmission through a single compressor house
 6.8.Optimization of transient regimes of natural gas transmission through an individual compressor house
Глава 7.Modeling trunkline and distribution gas pipeline systems
 7.1.General aspects concerning the modeling and optimizing of gas transmission through pipeline networks
 7.2.A method of tuning integrated GTS models to the actual parameters of pipeline networks
  7.2.1.Basic gasdynamic identified mode
  7.2.2.Computational estimate of the attained identification level in a pipeline network
 7.3.Method of numerical analysis of unbalances in natural gas deliveries through pipeline networks
Приложение 1. Calculational estimates of hydraulic friction factors in pipelines
Приложение 2. On the "alternative" form of writing the matching conditions for gasdynamic flow parameters in a pipeline branching node
Приложение 3. Computational estimates of the Ch\'ezy coefficient values
 A.Single-term formulas
 B.Polynomial formulas
Bibliography
About the authors

About the authors
top

Seleznev, Vadim Evgenievich

Professor, Doctor of Science. Graduated cum laude from Kharkov Institute for Aviation in 1985. Until 2006 worked on defense-related subjects and also in the field of mathematical modeling of objects of complex energy systems for civilian purposes at the Russian Federal Nuclear Center, the All-Russian Research Institute of Experimental Physics (Sarov). From 2006 to the present is occupied with solving problems of high-accuracy numerical simulation of energy and pipeline transport objects for private companies. Professional interests: numerical hydromechanics, combustion theory, and mathematical optimization. Authors more than 200 scientific publications, including 12 books in Russian and English.

Pryalov, Sergey Nikolaevich

Candidateof Science. Graduated cumlaude from Moscow State Institute for Physics Engineering in 1998. Until 2006 worked in the field of mathematical modeling of hydrodynamic processes in pipeline and channel systems of the fuel and energy complex at the Russian Federal Nuclear Center, the All-Russian Research Institute of Experimental Physics (Sarov). From 2006 to present is interested in high-accuracy numerical simulation of energy and pipeline transport objects for private companies. Professional interests: fluid mechanics and numerical methods in mechanics. Authors more than 120 scientific publications, including 7 books in Russian and English.


Об авторах
top
Вадим Евгеньевич СЕЛЕЗНЕВ

Доктор технических наук, профессор. Окончил с отличием Харьковский авиационный институт в 1985 г. После окончания института до 2006 г. работал в Российском федеральном ядерном центре — Всероссийском научно-исследовательском институте экспериментальной физики (г. Саров) в области создания военной техники, а также в области математического моделирования объектов сложных энергетических систем гражданского назначения. С 2006 г. по настоящее время занимается решением проблем высокоточного численного моделирования объектов энергетики и трубопроводного транспорта в рамках частных компаний. Профессиональные интересы: вычислительная гидромеханика, теория горения и математическая оптимизация. Автор более 200 научных работ, в том числе 12 монографий на русском и английском языках.


Сергей Николаевич ПРЯЛОВ

Кандидат технических наук. Окончил с отличием Московский государственный инженерно-физический институт в 1998 г. После окончания института до 2006 г. работал в Российском федеральном ядерном центре — Всероссийском научно-исследовательском институте экспериментальной физики (г. Саров) в области математического моделирования гидродинамических процессов в трубопроводных и канальных системах топливно-энергетического комплекса. С 2006 г. по настоящее время занимается высокоточным численным моделированием объектов энергетики и трубопроводного транспорта в рамках частных компаний. Профессиональные интересы: механика газов и жидкостей, численные методы механики. Автор более 120 научных работ, в том числе 7 монографий на русском и английском языках.