CONTENTS
CONTENTS 3 INTRODUCTION 11 Lecture I. THE BOLTZMANN THEORY 14 § 1. The Boltzmann equation 16 Problem 1. Molecule collision number 20 § 2. The Boltzmann iï-theorem 21 § 3. Conservation laws 25 P r o b 1 e m 2. Locally equilibrium distributions 26 § 4. The r-approximation 27 P r o b 1 e m 3. The thermal conductivity in the r-approximation 28 P r o b 1 e m 4. The coefficient of viscosity in the r-approximation 30 § 5. An approximate solution of the Boltzmann equation 31 §5.1. The thermal conductivity 35 § 5.2. Coefficients of viscosity 37 § 6. The Boltzmann equation for a binary mixture 41 § 7. The Chapman—Enskog equation for a binary mixture 43 §7.1. The system of algebraic equations 47 § 7.2. Diffusion and thermal diffusion 51 § 7.3. The thermal conductivity of a gas mixture 53 § 7.4. The transversal viscosity of a gas mixture 55 P r o b 1 e m 5. The diffusion coefficient 56 P r o b 1 e m 6. The thermal diffusion coefficient 59 Appendix. The Bogolubov dynamical theory .... 62 References 66 Lecture II. HYDRODYNAMIC EQUATIONS 67 § 1. General relations 68 § 1.1. Mass conservation law 68 § 1.2. Momentum conservation law 69 § 1.3. Energy conservation law 70 § 2. The closed system of equations 72 § 3. Linearized hydrodynamic equations 75 § 4. Hydrodynamic excitations 77 § 5. Excitations in a charged system 79 § 6. Meteorologist's equations 80 References 82 Lecture III. THE ENSKOG THEORY 83 § 1. The Enskog equation 84 § 2. Conservation laws 88 § 3. Linearization of the collision integral 91 § 4. The equations of hydrodynamics 95 § 5. Solution of the transport equation 96 § 6. Calculation of the transport coefficients 97 §6.1. transport corrections 97 § 6.2. Corrections caused by momentum transfer 99 § 6.3. The shear and volume viscosity factors 101 § 6.4. Corrections caused by energy transfer 102 § 6.5. The thermal conductivity 104 § 7. Conclusions 104 Appendix. Calculation of angular integrals 105 References 110 Lecture IV. TRANSPORT EQUATIONS FOR CHARGED PARTICL Ill § 1. Small momentum transfer 112 § 2. Landau's collision integral 114 Problem 1. Transport coefficients in the r-approximation 119 P r o b 1 e m 2. The cooling rate of hot electrons 122 § 3 The H theorem for Landau's collision integral .... 124 § 4. The Fokker—Planck collision integral 126 § 4.1. The Fokker-Planck equation for charged particles 127 § 4.2. The Fokker-Planck equation for heavy particles 130 P r o b 1 e m 3. The mobility of heavy particles 131 P r o b 1 e m 4. The diffusion and thermodiffusion coefficients 132 References 134 Lecture V. ELECTRONS IN A METAL (T < 6) 135 § 1. The equation for the distribution function 136 Problem 1. The residual resistance 141 P r o b 1 e m 2. The electron thermal conductivity 142 P r o b 1 e m 3. The thermoelectric effect 143 P r o b 1 e m 4. The law of increasing entropy 144 § 2. The Kondo effect 146 § 2.1. The perturbation theory 146 § 2.2. The temperature correction 153 § 2.3. Reducing to a one-dimensional problem 156 § 3. Non-stationary phenomena 157 § 3.1. Longitudinal fields 157 §3.2. Transversal fields 161 References 166 Lecture VI. ELECTRONS AND PHONONS IN A METAL 167 § 1. The electron—phonon interaction 168 § 2. The transport equation in metals 170 § 2.1. The if-theorem on entropy increase 171 § 3. The transport equation at equilibrium phonons ...174 § 3.1. Integration over virtual electron momenta 180 § 3.2. Integration over scattering angles 180 § 3.3. A trial function of the first approximation 181 § 3.4. The Bloch-GrMneisen equation 182 § 4. The resistance in dependence of temperature .... 183 § 5. The thermal conductivity in dependence of temperature 186 § 5.1. Low temperatures T < O 186 § 5.2. The kernel of the integral equation 190 § 5.3. High temperatures T ^> 0 191 Problem 1. Qualitative considerations 192 P r o b 1 e m 2. The rate of phonon relaxation 195 P r o b 1 e m 3. The rate of electron relaxation 196 § 6. The conductivity of semiconductors 198 § 7. Umpklapp processes and their role 200 References 205 Lecture VII. NON-STATIONARY PERTURBATION THEORY 206 § 1. The Schwinger—Mills—Keldysh theory 207 § 1.1. The transition to the interaction representation 208 § 1.2. Averaging over the states of an ideal gas 209 § 1.3. The diargammatic technique 212 § 2. Tunneling through a fiat interface 214 § 3. The Kubo formula 217 § 4. A longitudinal external field 219 §4.1. The longitudinal non-stationary correction 220 § 4.2. The longitudinal dielectric permittivity 222 § 5. A transversal external field 224 §5.1. The transversal non-stationary correction 226 § 5.2. The transversal dielectric permittivity 226 § 5.3. The calculation of the penetration depth 231 § 6. The rate of relaxation of impurity spins 232 References 237 Lecture VIII. THE TUNNELING CURRENT AND THE JOSEPHSON EFFECT 238 § 1. Tunneling at a given voltage applied 239 § 1.1. The tunneling Hamiltonian and average current 239 § 1.2. The (u-v) transformation with a phase factor 241 § 1.3. The calculation of the volt ampere characteristic 243 § 2. The stationary (d.c.) supercurrent 249 §2.1. The calculation of the Josephson current amplitude ... .250 § 3. The non-stationary Josephson effect 256 §3.1. The Josephson current. The temperature T <^ Tc 258 § 3.2. The interference current. The temperature T < Tc .... 262 § 4. Conclusion 264 Appendix The calculation of elliptic integrals 266 References 270 Lecture IX. QUANTUM TRANSPORT PHENOMENA 271 § 1. The equation for the density matrix 272 § 2. The quantum transport equation 277 § 3. The Dyson equation 280 § 4. Collision integrals 285 §4.1. The scattering by impurities 288 § 4.2. The scattering by equilibrium phonons 289 § 4.3. The electron-electron interaction 292 § 4.4. The Landau collision integral 295 § 5. The screening and plarization 298 §5.1. The plasmon exchange 305 § 6. The retarded and advanced Green functions 305 § 7. Diffusons and Coopérons 310 § 7.1. "Long tails" of correlation functions 319 References 321 Lecture X. NOISE IN ELECTRICAL CIRCUITS ...322 § 1. The fluctuation-dissipation theorem 324 § 1.1. The Kubo formula 325 § 1.2. The white noise 326 § 2. The 1//-noise in electrical circuits 330 § 2.1. The l//-noise. Description of phenomenon 330 § 2.2. The 1/f -noise. The setting of problem 330 § 3. The equations at T = 0 331 §3.1. The equation for four-current correlator 333 § 3.2. Equations for two-current vertices 336 § 3.3. Equations for scalar vertices 339 § 3.4. Calculation of the exponent a 342 § 4. The l//a-noise at a finite temperature 343 §4.1. Experimental data 343 § 4.2. Scheme of calculations 344 § 4.3. Formulation of problem 347 § 5. Renormalization-group equations 351 §5.1. Equations for scalar vertices 351 § 5.2. Equations for two-current verticies 354 § 5.3. Equations for four-current vertices 356 § 6. Calculation of the exponent a 357 § 7. Calculation of ip values 360 §7.1. Low temperatures (T < O) 362 § 7.2. High temperatures (T ^> 0) 363 § 7.3. Qualitative comparisons with experiment 364 § 7.4. Conclusions 365 References 366 Lecture XL TRANSPORT EQUATION FOR PHONONS 367 § 1. The transport equation 368 § 2. The phonon—phonon interaction 368 § 3. The three—phonon collision integral 370 § 4. The H-theorem 373 § 5. The thermal conductivity of dielectrics 377 §5.1. The equation at a given temperature gradient 377 § 5.2. The thermal conductivity at high temperatures 379 § 5.3. The thermal conductivity at low temperatures 380 § 6. The phonon hydrodynamics equations 384 § 7. Sound absorbtion. Short waves 387 § 8. Sound absorbtion. Long waves 392 § 8.1. Long waves. High temperatures T ^ 0 395 § 8.2. Long waves. Low temperatures T < O 396 Problem. Sound absorbtion in the r approximation 397 References 402 Lecture XII. TRANSPORT PHENOMENA IN FERMI-LIQUID 403 § 1. The equation for the distribution function 404 § 2. The relaxation time in dependence of tempera- ture 406 § 3. The conservation laws 407 §3.1. The continuity equation for quasi-particles 407 § 3.2. The momentum conservation law 408 § 3.3. The energy conservation law 409 § 4. Linearization of the transport equation 410 Problem 1. The thermal conductivity in dependence of temperature 412 Problem 2. The viscosity in dependence of temperature 415 Problem 3. Electron's entrainment 417 § 5. The exact solution of the transport equation 418 § 5.1 Separation of variables 418 § 5.2 Transformation of the kernel of the integral equation 418 § 6. Solution of integral equations 425 § 6.1. The inhomogeneous equation. Even functions 426 § 6.2. The inhomogeneous equation. Odd functions 429 § 7. The shear viscosity. The exact solution 431 § 8. The thermal conductivity. The exact solution 434 § 9. The second viscosity 436 § 10. The sound propagation in a Fermi-liquid 438 § 10.1. The zero sound in a Fermi-liquid 438 § 10.2. The velocity of hydrodynamic sound 438 § 10.3. The sound absorbtion in the r-approximation 441 § 11. The if-theorem 451 Appendix A. The effective mass 455 Appendix B. Calculation of integrals 457 Appendix C. Calculation of angular integrals 460 References 462 Lecture XIII. TRANSPORT PHENOMENA IN SUPERCONDUCTORS 463 § 1. The non-stationary Meissner effect 464 § 1.1. The Pippard case 472 § 1.2. The London case 477 § 2. The absorbtion of ultrasound 480 § 3. The rate of relaxation of the nuclear spins 485 § 4. The thermal conductivity of a superconductor .... 489 § 5. The Ginzburg—Landau non-stationary equations 495 Problem 1: The gauge invariant GLAG equation 501 P r o b 1 e m 2: Relaxation in an ideal superconductor 502 P r o b 1 e m 3: Relaxation in a non-ideal superconductor .... 503 References 510 BIBLIOGRAPHY 511 Manuals and monographs 515 ![]() Rogdai Olegovich Zaitsev was born in Moscow in 1938. He graduated from the physical faculty of the Moscow State University in 1961; worked in the Kurchatov Institute of Nuclear Energy from 1965 to 2008. Now he works in the Moscow Institute of Physics and Technology as a professor of theoretical physics.
His scientific interests are devoted to theories of solid state, superconductivity, ferromagnetism, and the non-linear theory of noise. |