URSS.ru Online Bookstore. Editorial URSS Publishers. Moscow
Cover Rukhadze A.A., Alexandrov A.F., Bogdankevich L.S. Principles of Plasma Electrodynamics Cover Rukhadze A.A., Alexandrov A.F., Bogdankevich L.S. Principles of Plasma Electrodynamics
Id: 166939
39.9 EUR

Principles of Plasma Electrodynamics Ed.2

URSS. 504 pp. (English). ISBN 978-5-396-00482-5.
White offset paper

Summary

Principles of Plasma Electrodynamics deals with plasmas and plasmalike media. The text is divided into three parts. The first part treats the linear electrodynamics of homogeneous plasma in equilibrium; the second is dedicated to linear electrodynamics of a spatially inhomogeneous non-equilibrium plasma, i. e., the theory of plasma instability. Finally, the principles of nonlinear plasma electrodynamics are outlined. The textbook contains a large number ...(More)of exercises with solutions.

This textbook is based on the course of lectures that was given by professor A.A. Rukhadze for the students of the department of physical electronics of Lomonosov MSU during the 1966–2006 years.

Read more about this title:
Содержание About the Authors

Содержание
top
PrefaceXIV
Part I Electromagnetic Properties of a Plasma in Thermodynamic Equilibrium3
1. Basic Concepts of Plasma Physics3
1.1 Definition of a Plasma3
1.1.1 Plasmas in Nature4
1.2 Plasma Parameters4
1.2.1 Plasmas in Thermodynamic Equilibrium and Quasi-equilibrium. The Maxwell and Fermi Distribution Functions5
1.2.2 Characteristic Values of Plasma Parameters7
1.3 Quasi-Neutrality, Plasma Frequency and Debye Length7
1.4 Gas Approximation and Plasma Parameter9
1.5 Exercises10
2. Principles of Eletrodynamics of Media with Dispersion in Space and Time15
2.1 Equations of the Electromagnetic Field in the Medium and Boundary Conditions15
2.1.1 Material Equations of Linear Electrodynamics17
2.1.2 Derivation of Boundary Conditions17
2.2 Tensor of Complex Conductivity and Dielectric Permittivity18
2.2.1 Dispersion in Time and Space19
2.2.2 The Case of the Isotropic Medium20
2.2.3 The Kramers-Kronig Formulas21
2.3 Energy of the Electromagnetic Field in the Medium22
2.3.1 The Dispersion of the Dielectric Permittivity Tensor24
2.3.2 Average Force Affecting the Plasma in the In-homogeneous High-Frequency Field26
2.4 Electromagnetic Waves in the Medium27
2.4.1 The Case of the Isotropic Medium28
2.4.2 Longitudinal Waves in an Anisotropic Medium28
2.5 Initial Value Problem30
2.6 Boundary Value Problem32
2.6.1 The Phase and Group Velocities of Waves33
2.6.2 Correlation Between the Initial and Boundary Value Problems33
2.7 Electro-and Magnetostatics35
2.8 Exercises37
3. Equations of Plasma Dynamics46
3.1 Simplest Plasma Models46
3.1.1 The Model of Indepedent Particles46
3.1.2 The Нуdrodynamic Model47
3.2 Kinetic Equation with a Self-Consistent Field49
3.3 Boltzmann Kinetic Equation50
3.3.1 The Fokker-Planck Equation53
3.4 Collision Integral of Charged Particles54
3.4.1 The Case of the Degenerate Plasma56
3.5 Model Integral for Elastic Particle Collisions57
3.5.1 The Case of the Degenerate Plasma59
3.6 Discussion of the Simplest Plasma Models60
3.6.1 Two-Fluid Hydrodynamics of a Cold Collisionless Plasma61
3.6.2 One-Fluid Hydrodynamics of the Nonisothermal Plasma62
3.6.3 The Hydrodynamic Description of a Degenerate Plasma65
3.7 Exercises66
4. Dielectric Permittivity and Oscillation Spectra of Unmagnetized Plasmas75
4.1 Dielectric Permittivity of a Collisionless Homogeneous Isotropic Plasma75
4.1.1 Cherenkov Absorption and Radiation Emission of Waves77
4.1.2 The Longitudinal and Transverse Dielectric Permittivities of an Isotropic Plasma79
4.1.3 The Dielectric Permittivity of a Degenerate Plasma80
4.2 Longitudinal Oscillations of a Collisionless Nondegenerate Plasma81
4.2.1 High-Frequency Plasma Waves81
4.2.2 Landau Damping82
4.2.3 Ion-Acoustic Waves in a Nonisothermal Plasma83
4.2.4 The Low-Frequency Range, Debye Screening85
4.3 Longitudinal Oscillations in the Collisionless Degenerate Plasma85
4.3.1 High-Frequency Plasma Waves and Zero-Point Sound85
4.3.2 Ion-Acoustic Waves in Degenerate Plasma87
4.3.3 Debye Screening in Degenerate Plasma87
4.4 Transverse Waves in Collisionless Isotropic Plasmas88
4.4.1 Transverse Electromagnetic Waves88
4.4.2 The Anomalous Skin-Effect89
4.5 Dielectric Permittivity and Oscillation Spectra of Weakly Ionized Plasmas with Account of Particle Collisions90
4.5.1 Collisional Damping of Longitudinal Waves92
4.5.2 Damping of Transverse Waves94
4.5.3 Degenerate Plasma94
4.6 Dielectric Permittivity and Oscillation Spectra of Fully Ionized Plasmas Taking Account of Particle Collisions95
4.6.1 Damping of Longitudinal High-Frequency Waves97
4.6.2 Collisional Damping of Ion-Acoustic Waves98
4.6.3 Damping of Transverse Waves98
4.6.4 Degenerate Plasma98
4.7 Exercises99
5. Dielectric Permittivity and Oscillation Spectra of Homogeneous Magneto-Active Plasmas110
5.1 Dielectric Tensor of the Homogeneous Collisionless Magneto-Active Plasma110
5.1.1 Dielectric Tensor of the Quasi-Equilibrium Max-wellian Plasma113
5.1.2 Dielectric Tensor of the Degenerate Plasma114
5.2 Dielectric Permittivity and Oscillation Spectra of the Cold Collisionless Magneto-Active Plasma115
5.2.1 Wave Propagation Along the Magnetic Field116
5.2.2 Wave Propagation Across the Magnetic Field118
5.2.3 An Arbitrary Direction of Wave Propagation120
5.2.4 Longitudinal Oscillations of the Magneto-Active Plasma120
5.3 Oscillations in Collisionless Magneto-Active Plasmas Taking Account of Thermal Effects122
5.3.1 Collisionless Damping of Waves in the Magneto-Active Plasma123
5.3.2 Spectra of Low-Frequency Slow Waves125
5.3.3 Degenerate Plasma127
5.4 Cyclotron Waves128
5.4.1 Cyclotron Waves in the Nondegenerate Plasma129
5.4.2 Cyclotron Waves in the Degenerate Plasma130
5.5 Dielectric Tensor of Weakly Ionized Magneto-Active Plasmas Taking Account of Particle Collisions131
5.5.1 Dielectric Tensor of the Quasi-Equilibrium Max-wellian Plasma132
5.5.2 Degenerate Plasma133
5.6 Dielectric Tensor of Completely Ionized Magneto-Active Plasmas Taking Account of Particle Collisions135
5.6.1 The High-Frequency Range135
5.6.2 The Range of Slow Waves137
5.6.3 Degenerate Plasma137
5.7 Electromagnetic Waves in Magneto-Active Plasmas Taking Account of Particle Collisions138
5.7.1 Damping of Waves in the Cold Magneto-Active Plasma138
5.7.2 Collisional Damping of Low-Frequency Waves in the Hot Magneto-Active Plasma140
5.8 Exercises141
Part II Electromagnetic Properties of Nonequilibrium Plasmas155
6. Interaction of Charged Beams with the Plasma155
6.1 Dielectric Tensor of the Homogeneous Anisotropic Non-equilibrium Plasma155
6.1.1 The Lorentz Transform of the Dielectric Tensor158
6.2 Instability of the Plasma with Anisotropic Temperature of the Particle Components160
6.2.1 Plasma Instability with Anisotropic Temperature in the Absence of Magnetic Field162
6.2.2 Instability of the Magneto-Active Plasma with Anisotropic Temperature165
6.3 Interaction of a Straight Electron Beam with the Plasma. The Cherenkov Instability167
6.3.1 Interaction of a Straight Electron Beam with Cold Isotropic Plasma168
6.3.2 Cherenkov Instability of the Electron Beam in the Cold Magneto-Active Plasma170
6.3.3 The Resonance Cherenkov Amplification of Waves172
6.3.4 The Effect of Thermal Motion on the Cherenkov Instability of the Electron Beam173
6.4 Interaction of a Rotating Electron Beam (Beam of Oscillators) with the Plasma. Cyclotron Instability175
6.4.1 Conditions for Resonance Cyclotron Interaction of a Rotating Beam with Electromagnetic Waves in the Plasma177
6.4.2 Convective and Absolute Cyclotron Instabilities180
6.4.3 Screening of the Cyclotron Radiation in the Plasma181
6.5 Exercises181
7. Plasmas in an External Homogeneous Electric Field195
7.1 The Distribution Function of the Charged Particles in an External Electric Field195
7.1.1 Plasmas in a Strong Constant Electric Field195
7.1.2 Runaway Electrons196
7.1.3 The Stationary Distribution Function of Electrons in a Weak Constant Electric Field197
7.1.4 Plasma in a High-Frequency Electric Field199
7.2 Stability of the Nonmagnetized Plasma in an External Constant Electric Field200
7.2.1 Buneman Instability of Nonmagnetized Plasma in Strong Electric Field201
7.2.2 Ion-Acoustic Instability of Plasma with a Current202
7.2.3 The Critical Velocity203
7.2.4 The Effect of Collisions on the Development of Instabilities204
7.2.5 The Case of the Degenerate Plasma205
7.3 Stability of the Magnetized Plasma in an External Constant Electric Field206
7.3.1 The Buneman Instability of the Magneto-Active Plasma206
7.3.2 The Ion-Acoustic Instability of Plasma with a Current in a Magnetic Field207
7.3.3 Effect of Collisions on the Development of Instabilities209
7.3.4 The Case of Degenerate Plasma209
7.4 The Plasma in a Superhigh-Frequency Electric Field210
7.4.1 The Dispersion Equation for Oscillations in the Plasma in a SHF Field213
7.4.2 High-Frequency Electro-Acoustic Oscillations214
7.4.3 Ion Acoustic Oscillations of the Plasma in a SHF Field215
7.4.4 Spectra of Oscillations of the Magneto-Active Plasma in a SHF Field216
7.4.5 Oscillations of the Degenerate Plasma in a SHF Field217
7.5 Paramagnetic Interaction of SHF Electric Fields with a Plasma218
7.5.1 Resonant Parametric Excitation of the High-Frequency Longitudinal Oscillations of the Plasma by SHF Fields219
7.5.2 The Effect of a Magnetic Field on the Development of the Parametric Instability of the Plasma in a SHF Field221
7.5.3 The Ion-Acoustic Parametric Instability of the Nonisothermal Plasma224
7.5.4 The Effect of the Magnetic Field on the Development of the Low-Frequency Parametric Instabilities225
7.5.5 The Case of the Degenerate Plasma225
7.6 Plasma Parametric Instability with Respect to Nonpotential Perturbations226
7.7 Exercises228
8. Electromagnetic Properties of Inhomogeneous Plasmas243
8.1 Inhomogeneous Media Without Spatial Dispersion. Approximation of Geometrical Optics243
8.1.1 Field Equations for an Inhomogeneous Medium Without Spatial Dispersion244
8.1.2 The Method of Geometrical Optics and the WKB Method245
8.1.3 The Bohr-Sommerfeld Quasiclassical Quantization Rules249
8.2 Approximation of Geometrical Optics for Inhomogeneous Media with Spatial Dispersion251
8.2.1 Eikonal Equation for an Inhomogeneous Medium with Spatial Dispersion252
8.2.2 Quantization Rules253
8.3 Dielectric Tensor of Weakly Inhomogenous Plasmas in the Approximation of Geometrical Optics254
8.3.1 Distribution Function for the Equilibrium Inhomogeneous Plasma254
8.3.2 Magnetic Confinement of the Inhomogeneous Plasma256
8.3.3 The Dielectric Tensor of Weakly Inhomogeneous Plasma257
8.3.4 The Larmor Drift Frequency259
8.3.5 The Case of the Degenerate Plasma260
8.4 Spectra of HF-Oscillations in Weakly Inhomogeneous Plasma261
8.4.1 Transverse Oscillations of Weakly Inhomogeneous Isotropic Plasma261
8.4.2 The Langmuir Oscillations. The Tonks-Dattner Resonances263
8.4.3 Ion-Acoustic Oscillations of the Inhomogeneous Isotropic Plasma264
8.4.4 The Case of the Degenerate Isotropic Plasma265
8.4.5 Oscillations of the Weakly Inhomogeneous Magneto-Active Plasma266
8.5 Drift Oscillations of a Weakly Inhomogeneous Collisionless Plasma268
8.5.1 Larmor Drift in the Inhomogeneous Plasma269
8.5.2 The Dispersion Equation for Drift Oscillations271
8.5.3 Spectra of the Fast Long-Wavelength Drift Oscillations272
8.5.4 Universal Instability of the Inhomogeneous Plasma273
8.5.5 Spectra of the Slow Long-Wavelength Drift Oscillations273
8.5.6 The Drift-Dissipative and Drift-Temperature Instabilities274
8.6 Influence of Charged Particle Collisions on the Spectra of Drift Oscillations in Weakly Inhomogeneous Plasmas275
8.6.1 Weakly Ionized Plasma275
8.6.2 Completely Ionized Plasma278
8.6.3 Spectra of the Hydrodynamic Drift-Dissipative Oscillations281
8.6.4 The Effect of Ion Collisions on the Development of Drift Oscillations283
8.7 Convective Instabilities of the Inhomogeneous Plasma285
8.7.1 Inhomogeneous Plasma in a Curvilinear Magnetic Field286
8.7.2 The Gravitational Drift of Plasma Particles287
8.7.3 Dielectric Permittivity of the Inhomogeneous Plasma in a Curvilinear Magnetic Field288
8.7.4 The Flute (Interchange) Instability289
8.7.5 The Current-Convective Instability290
8.7.6 The Effect of Particle Collisions on Convective Instabilities of the Plasma291
8.8 Exercises292
9. Linear Electromagnetic Phenomena in Bounded Plasmas302
9.1 Surface Electromagnetic Waves in Semi-Bounded Plasmas302
9.1.1 Solution of the Vlasov Equation for the Semi-Bounded Isotropic Plasma303
9.1.2 Solution of Field Equations305
9.1.3 Surface Impedance308
9.1.4 Dispersion Equation for Surface Waves308
9.1.5 Surface Waves in Cold Semi-Bounded Plasma309
9.1.6 Cherenkov Damping of Surface Waves310
9.1.7 Surface Ion-Acoustic Waves311
9.2 Instability of the Boundary of Magnetically Confined Plasma313
9.2.1 Poisson's Equation for the Magnetically Confined Inhomogeneous Plasma314
9.2.2 Surface Oscillations of the Cold Magneto-Active Plasma with a Sharp Boundary316
9.2.3 Instability of the Surface of the Magnetically Confined Plasma318
9.3 Plasma Waveguide321
9.3.1 Field Equation for the Cylindrical Plasma Waveguide323
9.3.2 Spectrum of Oscillations of the Isotropic Plasma Waveguide324
9.3.3. Spectrum of Oscillations of the Magnetized Plasma Waveguide327
9.4 Stability of Spatially Bounded Nonequilibrium Plasma330
9.4.1 Buneman Instability in the Plasma Waveguide330
9.4.2 Pierce Instability of the Plasma with a Current in Longitudinally Bounded Systems332
9.4.3 Ion-Acoustic Instability of the Bounded Plasma with a Current333
9.5 Excitation of a Plasma Resonator by Relativistic Electron Beam334
9.5.1 Cherenkov Wave Excitation334
9.5.2 Cyclotron Wave Excitation339
9.6 Exercises341
Part III Principles of Nonlinear Electrodynamics of Plasma363
10. Electromagnetic Fluctuations in Plasma and Wave Scattering363
10.1 Correlation Functions of the System of Charged Particles. General Analysis363
10.1.1 Fluctuations of Charge und Current Densities in the System of Noninteracting Particles366
10.1.2 Plasma Fluctuations in the First-Order Approximation of Interparticle Interactions368
10.2 Fluctuations in Equilibrium Plasma. Fluctuation-Dissipation Theorem370
10.2.1 Fluctuation-Dissipation Theorem for the Thermo-dynamically Equilibrium Isotropic Plasma370
10.2.2 The Case of the Anisotropic Plasma371
10.3 Spectra Distribution of Fluctuations in Equilibrium Collisionless Plasma373
10.3.1 Fluctuations of Charge Densities and Longitudinal Electric Field373
10.3.2 Fluctuations in the Degenerate Electron Plasma377
10.3.3 Fluctuations in the Equilibrium Magneto-Active Plasma378
10.4 Fluctuations in Nonequilibrium Plasmas. Nonisothermal Plasma and Plasma with a Beam380
10.4.1 Fluctuations in the Quasi-Equilibrium Nonisothermal Plasma381
10.4.2 Fluctuations in the Plasma with an Electron Beam383
10.5 Fluctuations and Interparticle Collisions in Plasma385
10.5.1 Fokker-Planck Equation386
10.5.2 Correlation Coefficients of the Dynamic Friction and Diffusion with Plasma Fluctuation Fields388
10.6 Scattering of Electromagnetic Waves in a Plasma390
10.6.1 Differential Cross Section of Scattering of Transverse Electromagnetic Waves in the Nonisothermal Plasma395
10.6.2 Effect of Collisions on Scattering398
10.7 Wave Transformation in Plasmas400
10.7.1 Transformation of Transverse into Longitudinal Wave in an Isotropic Plasma400
10.7.2 Transformation of Longitudinal into Transverse Wave401
10.8 Exercises402
11. Principles of the Quasilinear Theory of Plasma Oscillations408
11.1 Basic Equations408
11.1.1 Quasilinear Equations for the Isotropic Plasma409
11.1.2 Conservation Laws of the Quasilinear Theory412
11.1.3 Quasilinear Equations for Magnetized Plasma413
11.2 Quasilinear Relaxation of Plasma Oscillations415
11.2.1 Relaxation of the Distribution Function415
11.2.2 Plateau Creation416
11.2.3 Time of Quasilinear Relaxation418
11.3 Quasilinear Relaxation of the Beam Instability419
11.3.1 Quasilinear Dynamics of the Hydrodynamical Beam Instability420
11.3.2 Relaxation of the Beam in the Kinetic Stage421
11.4 Exercises424
12. Nonlinear Interaction of Waves in a Plasma431
12.1 Principles of Nonlinear Electrodynamics of Material Media431
12.1.1 Multi-Index Dielectric Tensors432
12.1.2 Averaged Equation of Nonlinear Electrodynamics433
12.1.3 Shortened Equation for Waves with Chaotic Phases435
12.2 Multi-Index Dielectric Tensors of Homogeneous Plasmas438
12.2.1 Solution of the Vlasov Equation438
12.2.2 Three- and Four-Index Tensors of the Isotropic Plasma440
12.2.3 Nonlinear Solution of the Vlasov Equation for the Magneto-Active Plasma442
12.2.4 Three- and Four-Index Tensors of the Magneto-Active Plasma444
12.3 Nonlinear Interaction of Waves in Isotropic Plasmas445
12.3.1 Induced Scattering of Plasma Waves in the Isotropic Plasma447
12.3.2 Nonlinear Coalescence of Plasma Waves450
12.3.3 Electromagnetic Scattering of Plasma Waves451
12.4 Nonlinear Three-Wave Interaction in a Plasma in the Field of Strong Electromagnetic Waves452
12.4.1 Equilibrium Distribution Function in the Field of Strong Electromagnetic Waves453
12.4.2 Dispersion Equation for Small Oscillations454
12.4.3 Induced Raman Scattering of Electromagnetic Waves in the Isotropic Plasma457
12.4.4 Mandelstam-Brillouin Scattering in the Nonisothermal Plasma458
12.5 Exercises459
Appendix A. The Main Operators of Field Theory in Orthogonal Curvilinear Coordinate System467
A. l Exercises469
Appendix B. Elements of Tensor Calculus470
B. l Exercises476
References479
Subject Index485

About the Authors
top
Rukhadze Anri Amvros’evich

Professor of Lomonosov Moscow State University, Principal Researcher of the Prokhorov Institute of General Physics of the Russian Academy of Sciences He is an eminent theoretical physicist and specialist in plasma physics. A. A. Rukhadze was awarded twice the USSR State Prize; also, has obtained the First-Degree Lomonosov Prize, the Order of the Badge of Honour and the Order of the Red Banner of Labour, as well as the title of Honored Scientist of the Russian Federation. He is an academician of the National Academy of Sciences of Georgia, the Russian Academy of Natural Sciences and the Prokhorov Engineering Academy. Also, he is a Honoris Causa Doctor of both the University of Sofia (Bulgaria) and the Bogolubov Institute of Theoretical Physics (Ukraine). His professional activity is indissolubly connected with the electrodynamics of media, plasma physics and plasma relativistic electronics. A. A. Rukhadze is the author of more than 600 scientific works, including 60 reviews and 16 monographs. He is the founder of a world-famous school on relativistic microwave electronics, which has brought up 68 Candidates of Sciences and 32 Doctors of Sciences.

Aleksandrov Andrey Fedorovich

Professor of Lomonosov Moscow State University, head of the physical electronics chair, head of the radiophysics and electronics branch of the Physics Department, Honored Professor of Lomonosov Moscow State University, Academician of the Russian Academy of Natural Sciences. He was awarded the Lomonosov Prize (1989, 1997) and the USSR State Prize (1981, 1991). Areas of scientific interest: plasma physics, relativistic microwave electronics, physical electronics. His researches deal with the physical bases of thin film production, and film structures for tasks of micro- and nanoelectronics, materials science and medicine. His team has created hydrocarbon carbonlike covers for medical implants possessing a unique biocompatibility and thrombus resistance, microporous carbon adsorbents, and others. He has assisted 26 Candidates of Sciences and 6 Doctors of Sciences. He is the author of more than 250 scientific papers and works, 10 monographs and scientific textbooks, including «Principles of Plasma Electrodynamics» (Springer Verlag, Berlin, 1984).

Bogdankevich Larisa Semeonovna

Senior Researcher of the Prokhorov Institute of General Physics of the Russian Academy of Sciences. She was an outstanding scientist in plasma physics and plasma relativistic electronics. She was awarded the USSR State Prize. Her professional activity was dedicated to the plasma physics and plasma electronics. L. S. Bogdankevich published more than 100 scientific works, including 5 reviews and 3 monographs.

Information / Order
376 pp. (English). Hardcover. 110.9 EUR

The present book includes the first full catalogue of Russian porcelain of the 18th and 19th centuries from the Vladimir Tsarenkov Collection. The collection has over 250 outstanding works by leading Russian manufactories — the Imperial Porcelain Factory in Saint Petersburg and the Gardner Porcelain... (More)


Information / Order
Sheliepin L.A. La coherencia. №09
URSS. 160 pp. (Spanish). Paperback. 14.9 EUR

El concepto de coherencia surgió en la óptica clásica. Hoy este concepto no sólo se ha convertido en un concepto general de la física, sino que se ha salido del marco de esta ciencia. En este libro el problema de la coherencia se estudia desde diferentes posiciones. Se examinan, además, las propiedades... (More)


Information / Order
URSS. 504 pp. (Spanish). Paperback. 32.9 EUR

Estamos tan habituados a que la ciencia describa la realidad mediante ecuaciones de asombrosa eficacia que raramente nos detenemos a pensar en la gentileza que demuestra el mundo prestándose a ello. ¿Por qué la naturaleza obedece reglas matemáticas tan magníficamente precisas?... (More)


Information / Order
URSS. 224 pp. (Spanish). Paperback. 16.9 EUR

De forma viva y amena, el autor expone una diversa información sobre el héroe del libro, la famosa constante matemática que aparece en los lugares más inesperados, obteniendo de este modo una especie de "pequeña enciclopedia" del número pi. La parte principal del libro es de carácter recreativo,... (More)


Information / Order
URSS. 304 pp. (Spanish). Paperback. 29.9 EUR

¿Qué es la dimensión del espaciotiempo? ¿Por qué el mundo que observamos es tetradimensional? ¿Tienen el espacio y el tiempo dimensiones ocultas? ¿Por qué el enfoque pentadimensional de Kaluza, el cual unifica la gravitación y el electromagnetismo, no obtuvo el reconocimiento general? ¿Cómo se puede... (More)


Information / Order
URSS. 224 pp. (Spanish). Paperback. 19.9 EUR

La presente edición de la obra Matemática en el tablero de ajedrez, del conocido ajedrecista y escritor Yevgueni Guik, consta de tres tomos, a lo largo de los cuales se describen diversos puntos de contacto entre estas dos actividades del intelecto humano. Se resuelven diversos tipos de problemas matemáticos... (More)


Information / Order
URSS. 136 pp. (Spanish). Paperback. 15.9 EUR

La teoría cuántica es la más general y trascendente de las teorías físicas de nuestros tiempos. En este libro se relata cómo surgieron la mecánica cuántica y la teoría cuántica de campos; además, en una forma accesible se exponen diferentes tipos de campos físicos, la interacción entre ellos y las transformaciones... (More)


Information / Order
URSS. 272 pp. (Spanish). Paperback. 21.9 EUR

El elemento clave de la física contemporánea es el concepto de campo cuántico. Hoy en día se considera que este constituye la forma universal de la materia que subyace a todas sus manifestaciones físicas. Este libro puede ser recomendado como una primera lectura para aquellos estudiantes y físicos de... (More)


Information / Order
URSS. 200 pp. (Spanish). Paperback. 19.9 EUR

La presente edición de la obra Matemática en el tablero de ajedrez, del conocido ajedrecista y escritor Yevgueni Guik, consta de tres tomos, a lo largo de los cuales se describen diversos puntos de contacto entre estas dos actividades del intelecto humano. Se resuelven diversos tipos de problemas matemáticos... (More)


Information / Order
URSS. 80 pp. (Russian). Paperback. 5.9 EUR

Коллекция забавных историй и легенд, шуточных дефиниций и остроумных высказываний химиков и о химиках. (More)