В математике, как и вообще в научных исследованиях, встречаются две тенденции: тенденция к абстракции – она пытается выработать логическую точку зрения на основе различного материала и привести весь этот материал в систематическую связь – и другая тенденция, тенденция к наглядности, которая в противоположность этому стремится к живому пониманию объектов и их внутренних отношений. Что касается геометрии, то в ней тенденция к абстракции привела к грандиозным систематическим построениям алгебраической геометрии, римановой геометрии и топологии, в которых находят широкое применение методы абстрактных рассуждений, символики и анализа. Тем не менее и ныне наглядное понимание играет первенствующую роль в геометрии, и притом не только как обладающее большой доказательной силой при исследовании, но и для понимания и оценки результатов исследования. Здесь мы будем рассматривать геометрию в ее современном состоянии с наглядной стороны. Руководствуясь непосредственным созерцанием, мы сможем уяснить многие геометрические факты и постановку вопросов и благодаря этому во многих случаях мы сможем также изложить в наглядной форме методы исследований и доказательств, которые приводят к пониманию теорем без введения в рассмотрение деталей абстрактных теорий и выкладок. Например, доказательство того, что сфера со сколь угодно малой дырой все еще разгибаема, или что два различных тора не всегда могут быть конформно отображены друг на друга, можно представить в такой форме, которая дает представление о ходе доказательства, не заставляя следовать за деталями аналитического изложения. Благодаря разносторонности геометрии и ее отношениям к различным ветвям математики мы получим, таким образом, обзор математики вообще и представление об изобилии ее проблем и о богатстве содержащихся в ней идей. Так, с помощью наглядного рассмотрения выявятся результаты важнейших направлений геометрии, содействующие справедливой оценке математики в широкой публике. Ибо вообще математика не пользуется популярностью, хотя ее значение и признается. Причина этого лежит в распространенном представлении о математике как о продолжении и более высокой ступени счетного мастерства. Этому представлению должна противостоять наша книга, в которой вместо формул приведено много наглядных фигур, которые читатель легко дополнит моделями. Книга должна послужить увеличению числа друзей математики, облегчая читателю проникновение в математику без необходимости изучения ее, сопряженного с известными трудностями. При такой целеустановке благодаря богатству материала не может быть никакой речи о систематичности и полноте изложения; не могли быть исчерпаны также и отдельные темы. Далее невозможно во всех разделах этой книги предполагать у читателя равную степень математической подготовки. В то время как вообще изложение совершенно элементарно, некоторые прекрасные математические исследования можно изложить вполне понятно только прошедшим уже некоторую школу, если избегать утомительных длиннот. Все добавления к отдельным главам предполагают известное предварительное образование. Они всегда дополняют, а не поясняют текст. Различные ветви геометрии находятся в тесных и часто неожиданных взаимоотношениях друг с другом. В нашей книге это очень часто проявляется. При большом разнообразии материала было все же необходима придать каждой отдельной главе известную законченность и в последующих главах не предполагать полного знания предыдущих; путем отдельных маленьких повторений мы надеялись достигнуть того, что каждая отдельная глава, а иногда даже отдельные разделы представляют интерес сами по себе и в отдельности доступны пониманию читателя. Пусть читатель прогуливается в огромном саду геометрии, в котором каждый может составить себе такой букет, какой ему нравится. Основу этой книги составили четырехчасовые лекции "Наглядной геометрии", которые я читал зимой 1920/21 г. в Геттингене и которые обработал В.Роземан. В основном содержание и построение их остались неизменными. В деталях С.Кон-Фоссен многое переработал и частично расширил. Давид Гильберт
Геттинген, июнь 1932 г.
Давид Гильберт (1862–1943) Окончил Кенигсбергский университет. В 1893–1895 гг. профессор Кенигсбергского, а в 1895–1930 – Геттингенского университетов. Вышел в отставку в 1933 г. Исследования Д.Гильберта оказали большое влияние на развитие многих разделов математики, в том числе теории инвариантов, теории алгебраических чисел, геометрии, вариационного исчисления, дифференциальных и интегральных уравнений, математической физики. Д.Гильберт был большим мастером в высшей степени наглядного изложения математических теорий,
и в этом отношении замечательна настоящая книга, написанная им совместно со Стефаном Кон-Фоссеном, талантливым немецким геометром,
умершим в молодом возрасте незадолго
до начала Второй мировой войны.
Стефан Кон-Фоссен (1902–1936) Немецкий математик, эмигрировавший
в 1934 г. в СССР. Занимался вопросами дифференциальной геометрии,
изгибания поверхностей в целом
и внутренней геометрии поверхностей.
|