В отечественной и переводной литературе по функциональному анализу, весьма обширной в настоящее время, имеется довольно много книг учебного характера и монографий. Здесь можно, например, упомянуть книги А.Н.Колмогорова, С.В.Фомина [2*], В.И.Смирнова [1*], Л.А.Люстерника, В.И.Соболева [1*], Г.Е.Шилова [3*], Ф.Рисса, Б.С.Надя [3], Б. 3. Вулиха '[1*], Л.В.Канторовича, Г.П.Акилова [1], Н.И.Ахиезера, И.М.Глазмана [1], И.М.Гельфанда (с соавторами) [1], [3], [5], такие сочинения энциклопедического характера, как книги Н.Данфорда, Дж.Шварца [1], Э.Хилле, Р.Филлипса [1], Н.Бурбаки [2] и ряд других. И тем не менее книга К.Иосида будет, как мы считаем, полезной и нужной для читателей, обладающих достаточной математической подготовкой (примерно в объеме программы 2--3 курсов физико-математических факультетов) и желающих углубить свои знания по функциональному анализу. Дело в том, что от обычных учебников курс профессора К.Иосида отличается более широким охватом различных разделов функционального анализа, современным, близким к уровню развития науки самых последних лет подходом к изложению материала и большим числом интересных приложений. Так, например, с самого начала широко используется понятие полунормы, рассматриваются такие вопросы, как теорема Хёрмандера о гипоэллиптических операторах, отрицательные нормы Лакса, ядерные операторы и пространства, теория почти-периодических функций на топологических группах, ряд задач теории марковских процессов, интегрирование уравнения диффузии в евклидовом и римановом пространствах и некоторые другие задачи, не являющиеся традиционными для учебника общего типа. Часть содержания книги, в особенности двух последних глав (эргодическая теория, диффузионные процессы и эволюционные уравнения), непосредственно связана с собственными научными интересами автора. Последнее обстоятельство в известной степени определило и выбор приложений, значительная часть которых относится к вышеупомянутым разделам математики. Многие результаты, вошедшие в книгу, раньше можно было найти лишь в специальных журналах (в особенности это относится к некоторым японским авторам); ряд результатов ранее не публиковался. С другой стороны, от больших по объему монографий, посвященных специальным вопросам и доступных лишь квалифицированным математикам, эта книга отличается последовательным изложением материала, постепенным нарастанием сложности и трудности изучаемых проблем, достаточно детальным рассмотрением основных понятий и, как правило, подробными доказательствами -- именно теми чертами, которые делают эту книгу учебником повышенного типа, преследующим в первую очередь цели подготовки читателя к изучению специальной литературы и самостоятельной научной работе. Следует отметить серьезный недостаток книги -- в ней почти совсем нет упражнений для самостоятельного решения. Это обстоятельство, а также весь стиль изложения, рассчитанный на сравнительно квалифицированного читателя, делает книгу трудной для первоначального ознакомления с основами функционального анализа. Поэтому можно порекомендовать в качестве предварительной подготовки познакомиться с книгами А.Н.Колмогорова, С.В.Фомина [2*] или Л.А.Люстерника, В.И.Соболева [1*]. При работе над книгой может также оказаться полезным справочник "Функциональный анализ" (см. Н.Я.Виленкин и др. [2*]) в особенности при затруднениях с терминологией. Несмотря на обилие включенных в книгу вопросов и широту охвата различных разделов функционального анализа, некоторые важные в теоретическом и прикладном плане проблемы остались в книге не затронутыми. Читатель не найдет в ней, например, теорем о неподвижных точках, нелинейных операторных уравнений, теории операторов в пространствах с конусом; такие важные понятия, как положительные операторы и функционалы, рассмотрены недостаточно подробно. Понятно, впрочем, что на нынешнем уровне развития функционального анализа никакой учебник не может охватить всех важных вопросов. Для изучения таких разделов читателю придется обратиться к другим книгам, в частности, упомянутые выше вопросы подробно освещены в книгах М.А.Красносельского [1*], [2*]. При переводе этой книги мы старались по возможности максимально приблизить терминологию к нормам, принятым в отечественной литературе. Текст перевода снабжен рядом примечаний, касающихся главным образом терминологии и обозначений и поясняющих детали формулировок некоторых определений и доказательств теорем. В.М.Волосов
В основу этой книги положены лекции, читавшиеся автором в Токийском университете в течение последних десяти лет. Книга была задумана как учебник по курсу функционального анализа, охватывающему общую теорию линейных операторов в функциональных пространствах и ее важнейшие приложения в различных областях современного и классического анализа. Ее можно использовать и для самостоятельного изучения предмета. Предварительные сведения, необходимые для чтения этой книги, приводятся (с доказательством или без) в введении в разделах "Теория множеств", "Топологические пространства", "Пространства с мерой", "Линейные пространства". Далее, начиная с главы, посвященной понятию полунормы, излагается общая теория банаховых и гильбертовых пространств, которые рассматриваются в тесной связи с теорией обобщенных функций С.Л.Соболева и Л.Шварца. В основном этот курс адресован студентам старших курсов, но мы надеемся, что книга будет полезна и тем, кто занимается исследовательской работой в области теоретической и прикладной математики. При желании читатель может после изучения гл.IX ("Аналитическая теория полугрупп") перейти прямо к гл.XIII ("Эргодическая теория и диффузионные процессы") и к гл.XIV ("Интегрирование эволюционных уравнений"). Такие разделы теории, как "Слабые топологии и сопряженность в локально выпуклых линейных топологических пространствах" и "Ядерные пространства", представлены в виде приложений соответственно к гл.V и X. Читатель, интересующийся в первую очередь приложениями теории линейных операторов, может опустить этот материал при первом чтении книги. При работе над книгой автор пользовался ценными советами и критическими замечаниями многих своих друзей. Автор чрезвычайно признателен госпоже К.Хилле, любезно взявшей на себя труд прочитать рукопись и корректуры книги. Без ее помощи было бы трудно преодолеть стилистические трудности языка, не являющегося для автора родным. Автор также многим обязан своим старым друзьям профессорам Иельского университета Э.Хилле и Какутани и профессору Станфордского университета Филлипсу, ценными советами и указаниями которых автор пользовался при работе над рукописью этой книги во время своего пребывания в 1952 г. в Иельском и Станфордском университетах. Профессор С.Ито и доктор Коматсу из Токийского университета во многом помогли автору при чтении корректуры, исправляя ошибки и улучшая изложение. Автор выражает им всем свою глубокую благодарность. Автор благодарен также профессору Гейдельбергского университета Шмидту и профессору Калифорнийского университета (Беркли) Като, чья поддержка постоянно воодушевляла автора, когда он писал эту книгу. Токио, сентябрь 1964 г. Косаку Иосида
Косаку ИОСИДА (1909--1990) Известный японский математик, профессор Токийского университета, специалист
в области функционального анализа. Родился в Хиросиме. После окончания
Токийского университета работал в высших учебных заведениях Осаки и Нагоя. В
1955 г. вернулся в Токийский университет. Иностранный член Академии наук СССР
с 1982 г. Автор многих работ в области функционального анализа,
дифференциальных уравнений, теории вероятностей. Его учебник "Функциональный
анализ" получил широкую популярность и был неоднократно переиздан на
английском языке, а также переведен на другие языки мира, в том числе и на
русский (1967).
|