Математическое описание мира основано на тонкой игре непрерывного и дискретного. Дискретное более заметно, "Функции, как и живые существа, характеризуются своими особенностями", как заметил П.Монтель. Особенности, бифуркации и катастрофы – термины, описывающие возникновение дискретных структур из гладких, непрерывных. За последние 30 лет теория особенностей достигла высокого технического уровня, главным образом благодаря работам Х.Уитни (1955), Р.Тома (1959) и Дж.Мазера (1965). Сейчас это – мощный новый математический аппарат, имеющий широкую область приложений в естествознании и технике (в особенности в комбинации с теорией бифуркаций, восходящей к диссертации А.Пуанкаре 1879 г. и далеко развитой А.А.Андроновым, 1933). Цель этой книги – объяснить, как этот аппарат работает, читателю-нематематику. Однако я надеюсь, что и специалисты найдут здесь новые для себя факты и идеи. Одни считают теорию катастроф частью теории особенностей, другие, наоборот, включают теорию особенностей в теорию катастроф. Чтобы избежать схоластического диспута, я называю катастрофистами тех, кто сам заявляет, что его работа относится к теории катастроф, предоставляя тем самым свободный выбор между терминами "особенности", "бифуркации" и "катастрофы" самим авторам соответствующих работ. Первые разделы этой книжки впервые появились в виде статьи в журнале "Природа" (1979, N10). Французский перевод с комментариями Р.Тома был опубликован в 1980 г. в сборнике переводов "Математика". Русские издания 1981 и 1983 г. и английские 1984 и 1986 г. каждое содержало новые разделы. Настоящее, наиболее полное издание, во многом отличается от предыдущих. Добавлены сведения об истории теории катастроф, расширены разделы о геометрических приложениях, о теории бифуркаций и о приложениях к "мягкому моделированию", включая исследование перестроек. Быть может, интересно отметить, что мои попытки, начиная с 1986 г., опубликовать анализ перестроек с точки зрения теории особенностей увенчались успехом лишь теперь, несомненно вследствие самой перестройки. Из более математических вопросов, включенных в новое издание, отмечу здесь теорию затягивания потери устойчивости, результаты о нормальных формах неявных дифференциальных уравнений и релаксационных колебаний, теорию внутреннего рассеяния волн в неоднородной среде, теорию граничных особенностей и несовершенных бифуркаций, описание каустики исключительной группы Ли F4 в терминах геометрии поверхности с краем и появление группы симметрии H4 правильного четырехмерного 600-гранника в задачах вариационного исчисления и оптимального управления, теорию перестроек ударных волн, универсальность каскадов удвоений, утроений и т.д. Автор благодарен профессорам Р.Тому, М.Берри и Дж.Наю за полезные замечания о предыдущих изданиях этой книжки. Том указал, что термин "теория катастроф" изобретен К.Зиманом, а термин "аттрактор", заменивший прежнее "притягивающее множество", употреблялся уже С.Смейлом (тогда как в первых изданиях эти заслуги были приписаны Тому). По совету Берри я включил в это издание аннотированную библиографию (для читателей-специалистов, которые найдут в ней источники большинства сообщаемых здесь сведений, за исключением небольшого числа результатов, впервые опубликованных в этой книжке с любезного согласия авторов), Профессор Най заметил, что некоторые очень интересные топологические причины препятствуют реализации ряда перестроек каустик (таких, как рождение "летающей тарелочки") в оптике, для каустик, порожденных уравнением эйконала или Гамильтона–Якоби с выпуклым по импульсам гамильтонианом. Я научился теории особенностей в четырехчасовой беседе с Б.Мореном после его замечательного доклада об особенностях Уитни и Морена на семинаре Тома в 1965 г. Морен объяснил мне тогда формулировку фундаментальной теоремы Мазера об устойчивости, анонсированной Мазером в только что полученном Мореном письме (доказательство – не такое, как у Мазера, я нашел позже, в тот же день). Неопубликованная работа Мазера 1968 г. о правой эквивалентности к несчастью (или к счастью) не была мне известна, и я осознал взаимоотношение между аналогичной работе Мазера работой Г.Н.Тюриной 1967 г. (опубликованной в 1968 г.) и моей работой 1972 г. об <A, D, E>, посвященной памяти Тюриной, только после того, как Дж.Милнор разъяснил мне его. Ни в 1965 г., ни позже я никогда не был в состоянии понять ни слова в собственных докладах Тома о катастрофах. Однажды он описал их мне (по-французски?) как "бла-бла-бла", когда я спросил его, в начале семидесятых годов, доказал ли он свои утверждения. Даже сегодня я не знаю, справедливо ли утверждение Тома о локальной топологической классификации бифуркаций в градиентных динамических системах, зависящих от четырех параметров (в исправленной форме, ибо контрпример к исходной "теореме" Тома, анонсированной в Topology в 1969 г., был опубликован Дж.Гукенхеймером в 1973 г., и "великолепная семерка", столь превозносимая катастрофистами, должна быть увеличена, чтобы теорема стала верной). Локальная топологическая классификация бифуркаций в градиентных динамических системах, зависящих от трех параметров, недавно получена Б.А.Хесиным (1985). Число топологически различных бифуркаций оказалось конечным, но значительно большим, чем предполагал Том, пропустивший ряд бифуркаций. Конечно ли число таких бифуркаций при четырех параметрах (Том утверждал, что их семь) – вопрос, до сих пор не решенный. Я не в состоянии также обсуждать и философские или поэтические декларации Тома, сформулированные таким образом, чтобы нельзя было решить, справедливы они или нет (в стиле, типичном для средневековой науки до Декарта и Бэкона или даже Бэконов). К счастью, фундаментальные математические открытия великого тополога независимы от какой бы то ни было иррациональной философии. Пуанкаре сказал как-то, что математики не уничтожают препятствия, мешающие им, но просто отодвигают их за границы своей науки. Отодвинем же эти специфические препятствия как можно дальше от границ науки, в область бессознательного и иррационального. Памяти М.А.Леонтовича
Первые сведения о теории катастроф появились в западной печати около 1970 г. В журналах типа "Ньюс уик" сообщалось о перевороте в математике, сравнимом разве что с изобретением Ньютоном дифференциального и интегрального исчисления. Утверждалось, что новая наука – теория катастроф – для человечества гораздо ценнее, чем математический анализ: в то время как ньютоновская теория позволяет исследовать лишь плавные, непрерывные процессы, теория катастроф дает универсальный метод исследования всех скачкообразных переходов, разрывов, внезапных качественных изменений. Появились сотни научных и околонаучных публикаций, в которых теория катастроф применяется к столь разнообразным объектам, как, например, исследования биения сердца, геометрическая и физическая оптика, эмбриология, лингвистика, экспериментальная психология, экономика, гидродинамика, геология и теория элементарных частиц. Среди опубликованных работ по теории катастроф есть исследования устойчивости кораблей, моделирования деятельности мозга и психических расстройств, восстаний заключенных в тюрьмах, поведения биржевых игроков, влияния алкоголя на водителей транспортных средств, политики цензуры по отношению к эротической литературе. В начале семидесятых годов теория катастроф быстро сделалась модной, широко рекламируемой теорией, напоминающей универсальностью своих претензий псевдонаучные теории прошлого века. Математические статьи основоположника теории катастроф Р.Тома были переизданы массовым тиражом в карманной серии – событие, которого не было в математическом мире со времени возникновения кибернетики, у которой теория катастроф заимствовала многие приемы саморекламы. Вслед за панегириками теории катастроф появились и более трезвые критические работы; некоторые из них также печатались в рассчитанных на широкого читателя изданиях под красноречивыми названиями вроде "А король-то – голый". Сейчас имеется уже много статей, специально посвященных критике теории катастроф. (См., например, обзор Дж.Гуккенхеймера "Споры о катастрофах" и пародию на критику теории катастроф.) Источниками теории катастроф являются теория особенностей гладких отображений Уитни и теория бифуркаций динамических систем Пуанкаре и Андронова. Теория особенностей – это грандиозное обобщение исследования функций на максимум и минимум. В теории Уитни функции заменены отображениями, т.е. наборами нескольких функций нескольких переменных. Слово "бифуркация" означает раздвоение и употребляется в широком смысле для обозначения всевозможных качественных перестроек или метаморфоз различных объектов при изменении параметров, от которых они зависят. Катастрофами называются скачкообразные изменения, возникающие в виде внезапного ответа системы на плавное изменение внешних условий. Чтобы понять, что такое теория катастроф, нужно вначале познакомиться с элементами теории особенностей Уитни. Арнольд Владимир Игоревич Выдающийся математик, академик АН СССР (РАН). Родился в Одессе, в семье известного математика и методиста И. В. Арнольда. В 1959 г. окончил механико-математический факультет Московского государственного университета имени М. В. Ломоносова. Доктор физико-математических наук (1963). До 1987 г. работал в университете; с 1965 г. — профессор. С 1986 г. работал в Математическом институте им. В. А. Стеклова. В 1990 г. был избран действительным членом Академии наук СССР (с 1991 г. — Российская академия наук). Президент Московского математического общества (1996). Член многочисленных иностранных академий и научных обществ, лауреат многих отечественных и зарубежных премий в области математики, обладатель ряда почетных докторских степеней в зарубежных университетах.
В. И. Арнольд — автор работ в области топологии, теории дифференциальных уравнений, теории особенностей гладких отображений, функционального анализа, теоретической механики, теории динамических систем, теории катастроф. В 20 лет, будучи учеником выдающегося советского математика А. Н. Колмогорова, он показал, что любая непрерывная функция нескольких переменных может быть представлена в виде комбинации конечного числа функций от двух переменных, тем самым решив тринадцатую проблему Гильберта (1957). Он был одним из создателей теории Колмогорова—Арнольда—Мозера (КАМ-теории), ветви теории динамических систем, изучающей малые возмущения почти периодической динамики в гамильтоновых системах и родственных им случаях. Автор десятков теорем, лемм, гипотез, задач и т. д., применимых в самых разных областях математики; основатель большой научной школы. Многие из его учебников и монографий были неоднократно переизданы и переведены на различные языки мира. |