С давних пор известны аналогии между: а) сознательной целесообразной деятельностью человека; б) работой созданных человеком машин; в) различнейшими видами деятельности живых организмов, которые воспринимаются как целесообразные, несмотря на отсутствие управляющего ими сознания. Человеческая мысль искала веками объяснения этих аналогий как на путях положительного знания, так и на путях религиозных и философских спекуляций. Твердая основа для научного их изучения и рационального философского уяснения была создана, когда: 1) Дарвин предложил последовательно разработанную теорию естественного происхождения целесообразного устройства живых организмов и, в частности, происхождения сложного аппарата, позволяющего живым организмам передавать свое целесообразное устройство по наследству потомкам; 2) Павлов установил возможность объективного изучения поведения животных и человека и регулирующих это поведение мозговых процессов без всяких субъективных гипотез, выраженных в психологических терминах. В течение последних десятилетий быстрое развитие техники связи (радио, телевидение), автоматики и вычислительной техники привело к значительному расширению самого фактического материала для сопоставлений работы машин с деятельностью живых организмов и с сознательной деятельностью человека. При этом в мышление инженеров все более стало проникать использование аналогий между работой создаваемых ими машин и работой человеческого сознания. Например, средства связи воспринимают "информацию" и передают ее точно или с "ошибками"; на автоматы возлагается задача следовать той или иной "стратегии" или "тактике" и даже "обучаться" у противника усвоенной им тактике, с тем чтобы выработать целесообразную ответную тактику; вычислительные машины имеют "запоминающие устройства" ("память"); программирующие машины сами "разрабатывают программу " сложных вычислений, пользуясь более или менее совершенной "логикой", и т.д. В этой практике инженеров трудно усмотреть какую-либо философски окрашенную преднамеренность: просто указанные аналогии слишком естественны и явным образом помогают инженерам думать и изобретать. Вполне понятно, что "целесообразная" работа машин не имеет никакой самостоятельности и является лишь техническим придатком к целесообразной деятельности человека. Однако богатый опыт, накопленный при конструировании автоматов и вычислительных машин, в настоящее время уже представляет большой интерес в качестве запаса моделей, помогающих представить себе возможные естественные управляющие и регулирующие механизмы. Процессы формирования условных рефлексов успешно изучаются при помощи моделирующих эти процессы машин. Существенно опираются на аналогии со сложными электронными машинами современные работы, анализирующие деятельность мозга. В современных работах по теории наследственности значительное применение находят представления о способах "кодирования " информации, разработанные в технической теории связи. Для понимания причин возникновения новой науки – кибернетики – более существенно другое следствие новейшего развития указанных выше разделов техники. Их развитие не только дает новый материал для философского анализа понятий "управления", "регулирования", "целесообразности" в применении к машинам и живым организмам, но, кроме того, привело к возникновению некоторых вспомогательных специальных дисциплин нефилософского характера. Эти дисциплины возникли непосредственно из практических потребностей под названиями "теория информации ", "теория алгоритмов", "теория автоматов". Конкретные результаты, полученные в их пределах, сейчас уже довольно многочисленны. Например, они позволяют: 1) оценить "количество информации", которое может быть надежно передано данным передающим устройством или сохранено данным запоминающим устройством; 2) оценить наименьшее количество простых звеньев с заданной схемой действия, которое необходимо, чтобы из них могло быть составлено управляющее устройство, выполняющее те или иные заданные функции. В обоих примерах результаты выражаются некоторыми математическими формулами, применимы же эти результаты совершенно одинаково и при конструировании машин, и при анализе деятельности живых организмов. Заслугой Н.Винера является установление того факта, что совокупность этих дисциплин (в создании некоторых из них Винер принимал значительное участие) естественно объединяется в новую науку с достаточно определенным собственным предметом исследования. Сейчас уже поздно спорить о степени удачи Винера, когда он в своей известной книге в 1948 году выбрал для новой науки название "кибернетика". Это название достаточно установилось и воспринимается как новый термин, мало связанный со своей греческой этимологией. Кибернетика занимается изучением систем любой природы, способных воспринимать, хранить и перерабатывать информацию и использовать ее для управления и регулирования. При этом кибернетика широко пользуется математическим методом и стремится к получению конкретных специальных результатов, позволяющих как анализировать такого рода системы (восстанавливать их устройство на основании опыта обращения с ними), так и синтезировать их (рассчитывать схемы систем, способных осуществлять заданные действия), Благодаря этому своему конкретному характеру кибернетика ни в какой мере не сводится к философскому обсуждению природы "целесообразности" в машинах и в живых организмах, не заменяя также собой общего философского анализа изучаемого ею круга явлений. Положение автора книги – У.Р.Эшби – как биолога, достаточно основательно изучившего отвлеченную, математическую сторону дела, весьма выигрышно для популяризации общих идей кибернетики среди лиц, для которых математический аппарат представляет большие трудности, а чрезмерно детальное вхождение в вопросы технической кибернетики тоже было бы затруднительно, При этом У.Р.Эшби достаточно осторожен в своих выводах и далек от нередко встречающегося рекламного стиля прославления кибернетики. Однако читатель должен критически относиться к высказываниям автора методологического и философского характера. Следует также иметь в виду, что некоторые выводы автора являются дискуссионными. А.Колмогоров
Многие работники биологических наук – физиологи, психологи, социологи – интересуются кибернетикой и хотели бы применять ее методы и аппарат в своей собственной специальности. Однако многим из них мешает убеждение, что этому должно предшествовать длительное изучение электроники и высших разделов чистой математики; у них сложилось впечатление, что кибернетика неотделима от этих предметов. Автор, однако, убежден, что это впечатление ложно. Основные идеи кибернетики по существу просты и не требуют ссылок на электронику. Для более сложных приложений может потребоваться более сложный аппарат, однако многое можно сделать, особенно в биологических науках, с помощью весьма простого аппарата; надо только применять его с ясным и глубоким пониманием затрагиваемых принципов. Если обосновать предмет общепринятыми, легко доступными положениями и затем излагать его постепенно, шаг за шагом, то, по мнению автора, нет никаких оснований ожидать, что даже работник с элементарными математическими знаниями не сможет достичь полного понимания основных принципов предмета. А такое понимание позволит ему точно решить, каким аппаратом он должен еще овладеть для дальнейшей работы и – что особенно важно – каким аппаратом он может спокойно пренебречь, как не имеющим отношения к его задачам. Настоящая книга должна служить такого рода введением. Она начинает с общих, легко доступных понятий и шаг за шагом показывает, каким образом эти понятия могут быть уточнены и развиты, пока они не приведут к таким вопросам кибернетики, как обратная связь, устойчивость, регулирование, ультраустойчивость, информация, кодирование, шум и т.д. Нигде в книге не требуется знания математики сверх элементарной алгебры. В частности, доказательства нигде не основаны на исчислении бесконечно малых (немногими ссылками на него можно безо всякого вреда пренебречь; они приведены лишь с целью показать, каким образом исчисление бесконечно малых может применяться к рассматриваемым вопросам). Иллюстрации и примеры берутся в основном из биологических, реже из физических наук. Совпадение с книгой "Устройство мозга" невелико, так что эти две книги почти не зависят друг от друга. Однако они тесно связаны между собой, и лучше всего рассматривать их как взаимно дополнительные: одна помогает понять другую. Книга делится на три части. В части I рассматриваются основные черты механизмов; в ней обсуждаются такие вопросы, как представление механизмов посредством преобразований, понятие "устойчивости", понятие "обратной связи", различные формы независимости, которые могут существовать внутри механизмов, и соединение механизмов друг с другом. В этой части излагаются принципы, которыми следует руководствоваться, когда система столь велика и сложна (например, мозг или общество), что может рассматриваться лишь статистически. В ней обсуждается также случай системы, не вполне доступной непосредственному наблюдению, – так называемая "теория черного ящика". В части II методы, развитые в части I, применяются к исследованию понятия "информации" и к исследованию кодирования информации при ее прохождении через механизмы. В этой части рассматривается применение указанных методов к различным проблемам биологии и делается попытка показать хотя бы часть всего обилия их возможных применений. Это приводит к теории Шеннона, так что, прочитав эту часть, читатель сможет без затруднений перейти к изучению работ самого Шеннона. В части III понятия механизма и информации применяются к биологическим системам регулирования и управления – как к врожденным, изучаемым физиологией, так и к приобретенным, изучаемым психологией. В ней показывается, как могут строиться иерархии таких систем регулирования и управления и как посредством этого становится возможным усиление регулирования. В ней дается новое и в общем более простое изложение принципа ультраустойчивости, Эта часть закладывает основы общей теории сложных систем регулирования, развивая дальше идеи книги "Устройство мозга". Таким образом, она дает, с одной стороны, объяснение исключительной способности регулирования, присущей мозгу, а с другой стороны – принципы, на основе которых проектировщик может строить машины, обладающие подобной способностью. Хотя книга задумана как легкое введение, она не является просто болтовней о кибернетике – она написана для тех, кто хочет путем самостоятельной работы войти в эту область, для тех, кто хочет на деле, практически овладеть предметом. Поэтому она содержит много легких упражнений, тщательно подобранных по степени сложности, с указаниями и подробными ответами, так что читатель по мере продвижения может проверять усвоение прочитанного и упражнять свои новые интеллектуальные мускулы. Немногие упражнения, требующие специального аппарата, отмечены звездочкой: "*Упр.". Их пропуск не затруднит продвижения читателя. Для удобства ссылок материал разделен на параграфы; при всех ссылках приводятся номера параграфов, и поскольку эти номера стоят на каждой странице сверху, найти параграф так же легко и просто, как найти страницу. Параграфы обозначаются так: "§9/14", что указывает на §14 гл.9. Рисунки, таблицы и упражнения нумеруются внутри каждого параграфа; так, рис.9/14/2 есть второй рисунок в §9/14. Простые ссылки, например "Упр. 4", обозначают ссылку на материал внутри данного параграфа. Там, где слово формально определяется, оно напечатано полужирным шрифтом. Я хотел бы выразить мою признательность Майклу Б.Спорну, проверившему все ответы к упражнениям. Я хотел бы также воспользоваться случаем, чтобы выразить глубокую благодарность управляющим больницы "Барнвуд Хаус" и д-ру Дж. У.Т.Х.Флемингу за широкую поддержку, которая сделала возможными эти исследования. Хотя книга затрагивает многие вопросы, они служат лишь средством; целью всей книги было выяснить, каким принципам нужно следовать, пытаясь восстановить нормальную деятельность больного организма, потрясающе сложного, если речь идет о человеке. Я верю, что новое понимание может привести к новым и действенным методам, ибо потребность в них велика. У.Росс Эшби
"Барнвуд Хаус" Глостер Эшби Уильям Росс Известный английский психиатр и специалист в области кибернетики. Окончил Кембриджский университет. С 1930 г. работал психиатром. С 1947 по 1959 гг. заведовал исследовательским отделом госпиталя «Барнвуд Хаус» в Глостере. В 1959–1960 гг. — директор Берденского нейрологического института в Бристоле. С 1960 г. — профессор кибернетики и психиатрии Иллинойсского университета (Эрбана, США). В 1971 г. стал членом Королевского колледжа психиатрии.
В область научных интересов У. Росса Эшби входили проблемы исследования мозга, принципы самоорганизации, адаптивные процессы. Ему принадлежит изобретение гомеостата (1948). Работы У. Росса Эшби оказали большое влияние на развитие кибернетики и теории систем. Именно он ввел термин «самоорганизующаяся система». |