Предлагаемая книга содержит популярное изложение геометрической теории устойчивости упругих оболочек, основанной на некоторых результатах теории конечных и бесконечно малых изгибаний поверхностей. Наряду с известными результатами, содержащимися в монографии автора «Геометрические методы в нелинейной теории упругих оболочек», в книгу вошли результаты исследований, выполненных в последние годы. В частности, здесь содержится полное решение задачи об устойчивости сферических оболочек под внешним давлением без каких-либо предположений о характере выпучивания. В рамках принятой математической модели явления дано полное исследование потери устойчивости общей строго выпуклой оболочки, защемленной по краю, под внешним давлением. Рассмотрен вопрос о потере устойчивости цилиндрических оболочек при осевом сжатии и оценено влияние различных факторов на критическую нагрузку. Рассмотрены и другие вопросы. В отличие от упомянутой выше монографии здесь мы ограничиваемся сравнительно небольшим числом классических задач о потере устойчивости оболочек, но исследуем их более полно. 1986 г. ![]() Специалист в области выпуклой и дифференциальной геометрии, теории дифференциальных уравнений и теории оболочек. Академик АН Украины (1961), академик АН СССР по отделению математики (1976), академик РАН (1991). Доктор физико-математических наук (1948). Лауреат Сталинской премии второй степени (1950), премии им. Н. И. Лобачевского (1959), Ленинской премии (1962), Государственной премии УССР (1974), Государственной премии Украины (2005, посмертно) и др. Награжден двумя орденами Ленина, орденом Трудового Красного Знамени и орденом Отечественной войны 2-й степени.
Область научных интересов А. В. Погорелова — геометрия и теория упругих оболочек. На основе развития синтетического подхода к проблеме геометрии «в целом», предложенного А. Д. Александровым, он окончательно решил классическую проблему однозначной определимости выпуклой поверхности ее внутренней метрикой. Полностью решил 4-ю проблему Гильберта для двумерного случая. Доказал внешнюю регулярность выпуклых поверхностей с регулярной внутренней метрикой. Основные теоремы, доказанные для этой проблемы, перенес на случай выпуклых поверхностей в пространствах постоянной кривизны. А. В. Погорелов — автор около 200 научных трудов, в том числе оригинального школьного учебника по геометрии и университетских учебников по аналитической геометрии, дифференциальной геометрии, основаниям геометрии. |