Эта книга является дополнением нашего «Краткого курса аналитической геометрии». Книга состоит из трех глав. Первая глава посвящена приведению к каноническому виду общего уравнения линии второго порядка. Изложение этой главы построено преимущественно в алгебраическом плане. Векторное исчисление з этой главе не употребляется (используется только понятие вектора как направленного отрезка и проекции вектора на оси координат). Решение основной задачи общей теории линий второго порядка изложено с расчетом, чтобы метод непосредственно обобщался по размерности. Таким образом, сущность дела в полной мере разъясняется на двумерном случае. Соответственно этому вторая глава, посвященная приведению к каноническому виду общего уравнения поверхности второго порядка, по своей схеме совершенно аналогична первой. Третья глава имеет своим предметом линейные преобразования и матрицы. И здесь основные вопросы прежде всего излагаются в двумерном случае с последующим обобщением на трехмерное пространство. В конце главы рассматривается приведение к каноническому виду квадратичных форм и устанавливается связь этого вопроса с теорией линий и поверхностей второго порядка. Третья глава написана соответственно требованиям по элементам линейной алгебры новой программы курса математики высших технических учебных заведений. Изложение последней главы не зависит от двух первых глав, Н. Ефимов
![]() Выдающийся советский математик, член-корреспондент АН СССР. Родился в Оренбурге. Учился в Северо-Кавказском государственном университете (ныне Южный федеральный университет) и аспирантуре Московского государственного университета; его учителями были известные математики Д. Д. Мордухай-Болтовской, Я. С. Дубнов, В. Ф. Каган, уехавший из нацистской Германии в СССР Стефан Кон-Фоссен. В 1934–1941 гг. работал в Воронежском университете (с 1940 г. — профессор), в 1941–1943 гг. — в Воронежском авиационном институте. В 1943–1962 гг. работал заведующим кафедрой математики в Московском лесотехническом институте. В 1946–1956 гг. — профессор кафедры математики физического факультета МГУ. В 1957–1982 гг. заведовал кафедрой математического анализа механико-математического факультета МГУ; в 1962–1969 гг. был деканом факультета. Член редколлегии «Математической энциклопедии». Лауреат Ленинской премии (1966) и премии имени Н. И. Лобачевского (1951). Награжден орденом Трудового Красного Знамени (1953, 1971).
В область научных интересов Н. В. Ефимова входили дифференциальная геометрия и прикладная математика. Основные его труды относятся к геометрии и посвящены, в частности, теории деформации поверхностей и теории поверхностей отрицательной кривизны. Он исследовал изгибание куска поверхности вблизи точки уплощения и показал, что существуют аналитические поверхности, неизгибаемые ни в какой окрестности такой точки. Им была решена обобщенная проблема Гильберта о поверхностях, имеющих во всех точках отрицательную гауссову кривизну; получено обобщение на произвольные поверхности с отрицательной верхней границей на кривизну теоремы Гильберта о погружении плоскости Лобачевского. В теории уравнений с частными производными он разработал метод исследования нелинейных гиперболических систем. Он создал и возглавил московскую школу геометров, занятую разработкой вопросов геометрии «в целом». |