URSS.ru Магазин научной книги
Обложка Александров П.С. Введение в гомологическую теорию размерности и общую комбинаторную топологию Обложка Александров П.С. Введение в гомологическую теорию размерности и общую комбинаторную топологию
Id: 260081
843 р.

Введение в гомологическую теорию размерности и общую комбинаторную топологию Изд. 2

2021. 368 с.
Типографская бумага

Аннотация

Настоящая монография, написанная академиком АН СССР П.С.Александровым, стала первой книгой, вводящей (в доступной форме) в основной круг идей и фактов гомологической теории размерности и не теряющей при этом связи с наглядными геометрическими построениями.

Книга содержит также изложение основ классической топологии полиэдров и компактов. Это обстоятельство, а также характер изложения — подробный и элементарный — делают книгу вполне доступной... (Подробнее)


Об авторе
top
photoАлександров Павел Сергеевич
Выдающийся ученый-математик, создатель отечественной топологической школы, получившей мировое признание. Лауреат Сталинской премии первой степени за научные работы в области математики: «Общая комбинаторная топология» и «О гомологических свойствах расположения комплексов и замкнутых множеств». Герой Социалистического Труда. Награжден шестью орденами Ленина, орденом Трудового Красного Знамени, орденом «Знак Почета». Лауреат Премии имени Н. И. Лобачевского за цикл работ по гомологической теории размерностей.

Окончил Московский государственный университет имени М. В. Ломоносова в 1917 г. Доцент Московского университета с 1921 г., профессор с 1929 г. В том же году был избран членом-корреспондентом АН СССР, а в 1953 г. — академиком. В 1932–1964 гг. — президент Московского математического общества, в 1958–1962 гг. — вице-президент Международного математического союза.

П. С. Александров ввел ряд фундаментальных понятий и конструкций топологии, создал теорию существенных отображений и гомологическую теорию размерности, основал и развил теорию компактных и бикомпактных пространств. Получил большое количество важных результатов в области теории множеств, теории функций действительного переменного. Среди его учеников такие известные математики, как Л. С. Понтрягин, А. Н. Тихонов, Л. Д. Кудрявцев, А. Г. Курош, Ю. М. Смирнов.