URSS.ru Магазин научной книги
Обложка Битюков С.И., Красников Н.В. Применение статистических методов для поиска новой физики на Большом адронном коллайдере Обложка Битюков С.И., Красников Н.В. Применение статистических методов для поиска новой физики на Большом адронном коллайдере
Id: 247352
780 р.

Применение статистических методов для ПОИСКА НОВОЙ ФИЗИКИ на Большом адронном коллайдере Изд. стереотип.

Применение статистических методов для поиска новой физики на Большом адронном коллайдере URSS. 2019. 272 с. ISBN 978-5-396-00910-3.
Белая офсетная бумага
  • Твердый переплет

Аннотация

В настоящей книге дан обзор статистических методов, используемых при поиске новой физики в экспериментах на Большом адронном коллайдере. В книге приведены многочисленные примеры, полезные для физиков, занимающихся обработкой данных с детекторов Большого адронного коллайдера.

Книга предназначена для научных работников --- как теоретиков, так и экспериментаторов; специалистов в области моделирования физических процессов при столкновениях... (Подробнее)


Оглавление
top
Введение
Глава 1.Основные понятия теории вероятностей
 1.1.Введение. Интуитивное понятие вероятности
 1.2.Аксиомы Колмогорова
 1.3.Условные вероятности. Теорема Байеса
 1.4.Случайные величины. Функции распределения
 1.5.Свойства функций распределений
 1.6.Характеристические функции
 1.7.Основные функции распределения вероятностей
  1.7.1.Биномиальное распределение
  1.7.2.Распределение Пуассона
  1.7.3.Нормальное одномерное распределение (распределение Гаусса)
  1.7.4.Многомерное нормальное распределение
  1.7.5.$\Gamma $-распределение
  1.7.6.$\chi^2$-распределение
  1.7.7.Логнормальное распределение
  1.7.8.Равномерное распределение
 1.8.Закон больших чисел. Центральная предельная теорема
  1.8.1.Закон больших чисел
  1.8.2.Центральная предельная теорема
 1.9.Информация
Глава 2.Задачи и методы математической статистики
 2.1.Основные задачи статистики
 2.2.Оценка параметров
  2.2.1.Метод максимального правдоподобия
  2.2.2.Оценка параметров в методе наименьших квадратов
  2.2.3.Метод моментов
  2.2.4.Байесовский подход
 2.3.Доверительный интервал и пределы доверия
  2.3.1. Интервал доверия Неймана
  2.3.2.Нормальное распределение
  2.3.3.Интервал доверия для нормального многомерного распределения
  2.3.4.Метод максимального правдоподобия
 2.4.Байесовский подход
  2.4.1.Нормальное распределение
  2.4.2.Общий случай
 2.5.Связь частотного и байесовского подходов
 2.6.Проблемы с определением интервалов в случае ограничения на параметры распределения
  2.6.1.Байесовский подход
Глава 3.Интервал доверия для распределения Пуассона
 3.1.Вводные замечания
 3.2.Частотный подход
  3.2.1.Модификация интервала Клоппера–Пирсона с помощью введения новой случайной переменной
  3.2.2.Метод наибольшего правдоподобия
 3.3.Байесовский метод
  3.3.1.Модифицированное частотное определение интервалов доверия и его эквивалентность байесовскому методу
 3.4.Оценка сигнала в распределении Пуассона при ненулевом фоне
  3.4.1.Байесовский подход
  3.4.2.Замечания к разделу 3.4.1
 3.5.Ожидаемые пределы
Глава 4.Учет систематических ошибок
 4.1.Введение
 4.2.Оценка параметра фона, исходя из измерений в другой кинематической области
 4.3.Оценка систематических неопределенностей в методе максимального профильного правдоподобия
 4.4.Метод усреднения Кузинса–Хайлэнда
 4.5.Заключение
Глава 5.Проверка гипотез
 5.1.Введение
 5.2.Проверка основной гипотезы
 5.3.Проверка сложной гипотезы
 5.4.Тест Неймана–Пирсона
 5.5.Байесовский подход к проверке гипотез
Глава 6.Получение пределов на новую физику в экспериментах CMS и ATLAS
 6.1.Вводные замечания
 6.2.Статистические методы, используемые при обработке результатов
  6.2.1.Байесовский подход
  6.2.2.Частотный подход
Глава 7.Комбинирование результатов
 7.1.Комбинирование двух нормальных распределений
 7.2.Нормальное распределение. Общий случай
 7.3.Метод наименьших квадратов
 7.4.Метод максимального правдоподобия
 7.5.Комбинирование пределов
 7.6.Байесовский подход
 7.7.Комбинирование уровней значимости (комбинирование значений вероятности)
 7.8."Look elsewhere" эффект
 7.9.Тест Колмогорова–Смирнова
Глава 8.Статистическое программное обеспечение в задачах физики высоких энергий
 8.1.Обзор основных пакетов
 8.2.Проект RooStats
 8.3.Проект BAT
 8.4.Многофакторные (многовариантные) методы в физике высоких энергий
  8.4.1.Немного теории
   Машинное обучение
   Байесовское обучение
   Сравнение машинного и байесовского обучения
   Регрессия и классификация
  8.4.2.Многофакторные методы на практике
   TMVA – инструментарий для многофакторного анализа (the Toolkit for Multivariate Analysis)
   Пакет SPR (StatPatternRecognition)
   Среда для принятия решений по выбору и уменьшению числа переменных PARADIGM
 8.5.Организационная база развития статистических методов и программных средств анализа экспериментальных данных
Заключение
Приложение 1. Методы Монте-Карло
 П.1.1.Равномерное распределение
 П.1.2.Метод обратного преобразования
 П.1.3.Метод фон Неймана (отбраковки)
 П.1.4.Алгоритмы
  П.1.4.1.Экспоненциальный распад
  П.1.4.2.Изотропное направление в трехмерии
  П.1.4.3.Синус и косинус случайного угла в двумерии
  П.1.4.4.Нормальное распределение
  П.1.4.5.$\chi^2(n)$-распределение
  П.1.4.6.Гамма-распределение
  П.1.4.7.Биномиальное распределение
  П.1.4.8.Распределение Пуассона
 П.1.5.Методы Монте-Карло с цепями Маркова
Приложение 2. Потенциал открытия в будущих экспериментах
 П.2.1.Вводные замечания
 П.2.2.Оценки качества планируемого эксперимента
  П.2.2.1.Вероятность открытия
  П.2.2.2.Значимость превышения сигнала над фоном
  П.2.2.3.Вероятность принятия правильного решения
  П.2.2.4.Тест равных хвостов
  П.2.2.5.Тест равной вероятности
  П.2.2.6.Универсальная значимость и предел исключения
  П.2.2.7.Разделимость гипотез
   Мера разделимости гипотез
   Случай распределения Пуассона
Приложение 3. Доверительные распределения
 П.3.1.Общие идеи
  П.3.1.1.Построение Р.А.Фишера
  П.3.1.2.Соотношение между плотностью вероятности случайной переменной и доверительной плотностью параметра
  П.3.1.3.Соотношение между плотностью вероятности случайной переменной и доверительной плотностью параметра в случае асимметричных распределений
  П.3.1.4.Неявные распределения
 П.3.2.Немного истории
 П.3.3.Доверительные распределения
 П.3.4.Информация для статистического вывода, содержащаяся в доверительном распределении 
 П.3.5.Примеры
  П.3.5.1.Статистический вывод: краткое обобщение
  П.3.5.2.Комбинирование доверительных распределений
 П.3.6.Доверительные распределения – другие подходы
  П.3.6.1.Доверительные распределения и пивоты
  П.3.6.2.Преобразование между пространством наблюденных величин и пространством возможных значений параметра
 П.3.7.Применения доверительных распределений
  П.3.7.1.Доверительные интервалы на сигнал при наличии неотделимого фона
  П.3.7.2.Оценка качества планируемого эксперимента
 П.3.8.Выводы
Приложение 4. Метод комбинированного оценивания нескольких фоновых процессов
 П.4.1.Метод
 П.4.2.Фоны для одиночного рождения топ-кварка
Литература

Об авторах
top
Битюков Сергей Иванович
Ведущий научный сотрудник ФГБУ «ГНЦ РФ — Институт физики высоких энергий» НИЦ «Курчатовский институт» и старший научный сотрудник Института ядерных исследований РАН, доктор физико-математических наук. Специалист в области применения математических моделей в физике высоких энергий. Член коллаборации «Компактный мюонный соленоид». Автор свыше 300 научных работ.
photoКрасников Николай Валерьевич
Доктор физико-математических наук, заведующий отделом Института ядерных исследований РАН и главный научный сотрудник Объединенного института ядерных исследований. Специалист в области квантовой теории поля и физики высоких энергий. Автор свыше 300 научных работ.