В последние десятилетия в связи с успехами высоковольтной импульсной техники и техники формирования мощных релятивистских электронных и ионных пучков вновь возродилась и начала бурно развиваться плазменная электроника. В настоящее время плазменная электроника охватывает очень широкий круг как чисто научных, так и прикладных проблем. Прежде всего предметом плазменной электроники является изучение: новых методов получения сильноточных пучков электронов и ионов, плазменных обострителей напряжения, пучкового возбуждения и ионизации газов, пучкового пробоя и плазменно-пучкового разряда, нейтрализации пространственного заряда и тока пучков, устойчивости их транспортировки. Предметом плазменной электроники является также исследование коллективных процессов релаксации пучков заряженных частиц в плазме и нагрева плазмы до высоких, термоядерных температур. Плазменная электроника изучает и коллективные методы ускорения заряженных частиц, и ускорение ионов плазменными и электромагнитными полями, возбуждаемыми плотными электронными пучками. Особое место в плазменной электронике занимает проблема электромагнитного взаимодействия электронных пучков с плазмой, пучковая неустойчивость и вынужденное излучение пучков в плазме. Эта проблема имеет огромное прикладное значение, поскольку она открывает возможность прямого преобразования направленной энергии электронных пучков в энергию когерентного электромагнитного излучения в широком диапазоне длин волн, начиная от дециметрового диапазона и вплоть до оптического и даже рентгеновского диапазонов. Учитывая огромные мощности импульсных электронных пучков, осваиваемых в плазменной электронике, есть все основания считать, что плазменные сильноточные источники электромагнитного излучения окажутся рекордными по мощности. В настоящей книге изложены основы электродинамики плотных электронных пучков в плазме. В ней последовательно изучены физические механизмы электромагнитного взаимодействия электронных пучков с плазмой, приводящие к развитию излучательных плазменно-пучковых неустойчивостей. Эти неустойчивости сопровождаются преобразованием энергии электронных пучков в энергию электромагнитного излучения, которая либо релаксирует в плазме, либо излучается из плазмы. Оба этих процесса представляют прикладной интерес либо для нагрева плазмы возбуждаемыми пучком электромагнитными полями, либо для создания мощных источников когерентного электромагнитного излучения. Именно под таким углом зрения изложен основной материал книги. Лишь последняя глава посвящена теории наиболее опасных неизлучательных пучковых неустойчивостей, которые играют важную роль при реализации плазменных усилителей и генераторов электромагнитного излучения на сильноточных электронных пучках. Значительное место в книге отведено изложению теории вынужденного излучения электронных пучков в системах без плазменного заполнения—диэлектрических волноводах, ондуляторах, системах с внешней электромагнитной накачкой или внешним статическим магнитным полем. Обсуждаются также основы общей теории релаксации электронных пучков, излучающих в электродинамических системах (как плазменных, так и вакуумных) достаточно общего вида. Естественно, книга не может претендовать на исчерпывающую полноту излагаемого теоретического материала. Такая полнота в настоящее время вряд ли и возможна. Плазменная электроника является сравнительно новой областью физики плазмы, для которой характерно обилие нерешенных, а подчас и не до конца сформулированных проблем. Поэтому мы надеемся, что наша книга окажется полезной физикам, работающим на «переднем крае» плазменной электроники и электродинамики пучков заряженных частиц.
![]() Доктор физико-математических наук, профессор физического факультета МГУ имени М. В. Ломоносова. Специалист в области электродинамики нелинейной плазмы, компьютерного моделирования неравновесных процессов в плазмоподобных средах, релятивистской СВЧ-электроники и теории волн в средах с пространственно-временной дисперсией. Разработал теорию вынужденного излучения электронных пучков в пространственно-ограниченной плазме и теорию релятивистских плазменных СВЧ-генераторов. Построил общую нелинейную теорию электромагнитного взаимодействия плотных релятивистских электронных пучков с диспергирующими замедляющими средами. Является одним из создателей нового научного направления — плазменной релятивистской СВЧ-электроники. Читает на кафедре физической электроники физического факультета МГУ лекционные курсы: «Физика электронных пучков», «Дополнительные главы электродинамики сред с дисперсией», «Плазменная СВЧ-электроника», «Теоретическая плазменная электротехника», «Физика волновых явлений». Автор более 250 журнальных статей, 12 книг и монографий. Подготовил 12 кандидатов и 2 докторов наук.
![]() Доктор физико-математических наук, главный научный сотрудник Института общей физики имени А. М. Прохорова РАН, профессор физического факультета МГУ. В 1954 г. окончил Московский инженерно-физический институт. Автор 550 научных работ, 57 обзоров и 15 монографий (4 из них переведены за рубежом). Член редколлегий журналов «Прикладная физика» и «Краткие сообщения по физике», главный редактор журнала «Инженерная физика». Заслуженный деятель науки РСФСР. Дважды лауреат Государственных премий СССР, лауреат премии имени М. В. Ломоносова I степени. Награжден орденом «Знак Почета» и орденом Трудового Красного Знамени, а также медалями «За трудовую доблесть» и «Ветеран труда».
В работах А. А. Рухадзе совместно с В. П. Силиным впервые сформулированы общие основы электродинамики плазмоподобных сред с пространственной дисперсией. Крупный вклад он внес в теорию колебаний и устойчивости неравновесной и неоднородной плазмы. А. А. Рухадзе по праву считается создателем релятивистской плазменной СВЧ-электроники и известной в мире школы в этой области науки. Кроме того, им были заложены основы новой области физики газового разряда — физики разряда в излучающей плазме. |