Интерес к великой теореме Ферма в нашем обществе растет с каждым годом; об этом свидетельствуют многочисленные запросы и попытки доказательств, получаемые нашими научными обществами и учреждениями. Между тем на русском языке не существует сколько-нибудь доступной литературы по этому вопросу, да и в странах Европы дело обстоит в этом отношении не многим лучше. Поэтому я охотно согласился на любезное предложение Научного Отдела Государственного Издательства написать небольшую книжку, которая всем интересующимся могла бы дать необходимые справки, касающиеся проблемы Ферма, ее истории и современного состояния, а также по возможности осветить ее со стороны принципиальной и методологической. Чтение этой книжки (за исключением дополнения) доступно каждому, кто знает элементарную арифметику. Москва. 16 июля 1925 г. А.Хинчин
Предложение, которое обычно называют Великой теоремой Ферма, родилось около середины XVII столетия; и во всей последующей истории математической мысли вряд ли можно найти другую задачу, которая в такой степени привлекала бы к себе научные усилия на протяжении столетий, как задача доказательства этой теоремы, – задача, не разрешенная и по настоящее время. В то время, в XVII столетии, не было организованных научных обществ и не было научных журналов. Научное общение осуществлялось главным образом путем переписки. Отдельные гиганты математической мысли писали друг другу о своих достижениях и надеждах, писали редко и не спеша, потому что общий темп жизни был медленным и потому что почта тоже не спешила и ответа приходилось дожидаться долго. С другой стороны, и ученых было мало, так что каждый из них мог по пальцам пересчитать тех, кому интересно было бы узнать о его работах. Всем этим объясняется то, что от многих математических истин, открытых в то время, до нас дошли одни формулировки; доказательств история часто не сохраняла, и их приходилось восстанавливать заново. В особенности это относится к предложениям теории чисел. В сущности, этой науки тогда еще не существовало; по крайней мере не было попыток соединить ее достижения в одно систематическое здание, и современники были склонны видеть в проблемах арифметики отдельные занятные, часто забавные, способные доставить изощренному уму тонкое наслаждение задачи; поэтому понятно, что в решении этих задач создалось соревнование, принимавшее характер спорта. Один писал другому: "Я умею решить такую-то задачу, умеешь ли ты ее решить?" А другой отвечал: "Нет, я ее решить не могу, и ты, очевидно, гениальный человек; но зато я знаю решение такой-то другой задачи; что ты можешь сказать о ней?" и т.д. Ферма, Френикль, Декарт, Паскаль и др. часто и много переписывались между собою именно в этом роде; поэтому вполне понятно, что в большинстве случаев до нас от этой переклички гигантов дошли одни названия их достижений; пути остались скрытыми. И если в большинстве случаев потомки, владевшие более сильными методами, сумели восстановить потерянные историей доказательства, то по крайней мере в одном случае – в случае Великой теоремы Ферма – им этого сделать не удалось. Вот краткая история рождения этой задачи: Пьер Ферма (Pierre Fermat), бесспорно, наиболее выдающийся французский математик XVII столетия, обычно по справедливости почитается отцом современной теории чисел; первые достижения этой науки возникли при попытках решения целого ряда задач, им поставленных. В 1670 г. сын Пьера Ферма издал книгу александрийского математика Диофанта, при чем были перепечатаны также и примечания Пьера Ферма, оставленные им на полях одного из экземпляров этого сочинения. Одно из этих примечаний и содержит предложение, получившее наименование Великой теоремы Ферма. Вот его смысл: Если n означает какое угодно целое положительное число, большее нежели 2, то уравнению xn + yn = zn (1) не могут удовлетворять никакие три целых положительных числа х, у и z. К этому Ферма прибавляет: Я нашел удивительное доказательство этого предложения, но поля книги слишком узки, чтобы оно могло на них поместиться. Таким образом доказательство, которым обладал сам Ферма, осталось необнародованным. С тех пор прошло почти триста лет, и мы еще не имеем ни доказательства ни опровержения Великой теоремы Ферма; и это несмотря на то, что, как уже сказано, задаче этой непрерывно посвящали и продолжают посвящать свое внимание многие крупные ученые и еще большее количество неспециалистов, которых соблазняет простота формулировки проблемы. Вопрос о том, имел ли действительно Ферма строгое доказательство своего предложения или же он заблуждался (в искренности его, повидимому, сомневаться не приходится), – этот вопрос, хотя он и часто обсуждается в литературе, очевидно, может иметь только историческое значение, почему мы здесь и не станем на нем останавливаться. Александр Яковлевич Хинчин (1894–1959) Выдающийся математик, доктор физико-математических наук, блестящий представитель Московской математической школы. Профессор МГУ им. М.В.Ломоносова (с 1922 г.), СГУ (1935–1937). Член-корреспондент АН СССР с 1939 г. В 1941 г. стал лауреатом Государственной премии СССР. C 1943 по 1957 гг. заведовал кафедрой математического анализа механико-математического факультета МГУ. Ученик Н.Н.Лузина. Действительный член Академии педагогических наук, один из ее основателей (1943). Награжден четырьмя орденами, в том числе орденом Ленина. Им получены основополагающие результаты в теории функций действительного
переменного, теории чисел, теории вероятностей, статистической физике.
|