Предисловие редактора перевода |
Предисловие к русскому изданию |
Предисловие |
Введение
|
ГЛАВА 1. Элементарная небесная и гамильтонова механика |
| 1.1. Уравнения движения |
| 1.2. Элементы орбит |
| 1.3. Возмущения задачи двух тел |
| 1.4. Гамильтоновы системы и задача двух тел |
| 1.5. Возмущения в гамильтоновом виде |
| 1.6. Канонические преобразования |
| 1.7. Свойства гамильтонова потока |
| 1.8. Интегрируемые гамильтонианы |
| 1.9. Переменные «действие—угол» |
| 1.9.1. Переменные Делоне |
| 1.9.2. Гамильтоновы уравнения в переменных Делоне для ограниченной и планетной задач |
| 1.9.3. Правила Даламбера |
| 1.10. Интегрируемая динамика
|
ГЛАВА 2. Квазиинтегрируемые гамильтоновы системы |
| 2.1. Введение в теорию возмущений |
| 2.2. Подход с применением рядов Ли |
| 2.3. Проблема малых делителей |
| 2.3.1. Нормальные формы |
| 2.4. Порядки выше первого |
| 2.4.1. Пример вычисления оптимального порядка нормальной формы |
| 2.4.2. Генерирование старших гармоник в процессе нормализации |
| 2.5. Усреднение по средним движениям |
| 2.5.1. Вековая нормальная форма |
| 2.5.2. Резонансная нормальная форма для резонансов средних движений
|
ГЛАВА 3. КАМ-торы |
| 3.1. Теорема Колмогорова |
| 3.1.1. Эскиз доказательства теоремы Колмогорова |
| 3.2. Свойства КАМ-торов |
| 3.3. Численные примеры
|
ГЛАВА 4. Динамика одиночного резонанса |
| 4.1. Интегрируемое приближение |
| 4.2. Резонансные переменные «действие—угол» |
| 4.3. Возмущенная резонансная динамика |
| 4.3.1. Величина остатка |
| 4.3.2. Резонансные инвариантные торы |
| 4.3.3. Расщепление сепаратрис |
| 4.3.4. Размер хаотической области
|
ГЛАВА 5. Численные инструменты для выявления хаоса |
| 5.1. Наблюдение временнoй эволюции в фазовом пространстве |
| 5.2. Показатели Ляпунова |
| 5.2.1. Вычисление МПЛ |
| 5.3. Частотный анализ |
| 5.3.1. Вычисление частот |
| 5.4. Суррогаты |
| 5.4.1. Быстрый индикатор Ляпунова |
| 5.4.2. Углы спиральности и закручивания |
| 5.4.3. Средний фактор экспоненциальной расходимости близких орбит |
| 5.4.4. Средние, максимальные и минимальные значения действий
|
ГЛАВА 6. Взаимодействие резонансов |
| 6.1. Две степени свободы |
| 6.1.1. Гетероклинические пересечения |
| 6.2. Более двух степеней свободы |
| 6.2.1. Теорема Нехорошева |
| 6.2.2. Нехорошевская структура |
| 6.2.3. Суперэкспоненциальная устойчивость КАМ-торов |
| 6.3. Исследование динамической структуры заданной системы
|
ГЛАВА 7. Вековая динамика планет |
| 7.1. Решение Лагранжа—Лапласа |
| 7.2. Решения более высокого порядка |
| 7.3. Хаотическое вековое движение планет |
| 7.4. Динамика осей вращения
|
ГЛАВА 8. Вековая динамика малых тел |
| 8.1. Линейное интегрируемое приближение |
| 8.2. Интегрируемое приближение Козаи |
| 8.2.1. Динамика Козаи внутри орбиты главного возмущающего тела |
| 8.2.2. Динамика Козаи снаружи орбиты главного возмущающего тела |
| 8.2.3. Переменные «действие—угол» для гамильтониана Козаи |
| 8.3. Собственные элементы |
| 8.3.1. Семейства астероидов |
| 8.4. Вековые резонансы |
| 8.4.1. Динамика в вековых резонансах |
| 8.4.2. Аномальный случай резонанса ν6
|
ГЛАВА 9. Резонансы средних движений |
| 9.1. Простое интегрируемое приближение |
| 9.1.1. «Фазовая защита» от столкновений с планетами |
| 9.1.2. Случай резонанса 1/1 |
| 9.2. Перекрытие резонансов средних движений |
| 9.2.1. Порог перекрытия вблизи планеты |
| 9.2.2. Перекрытие планетных резонансов |
| 9.3. Резонансные мультиплеты |
| 9.4. Приближение модулированного маятника
|
ГЛАВА 10. Трехтельные резонансы |
| 10.1. Происхождение резонансных членов в возмущении |
| 10.1.1.Прямой эффект |
| 10.1.2.Косвенный эффект |
| 10.1.3. Учет обоих(прямого и косвенного) эффектов в астероидной задаче |
| 10.2. Трехтельные резонансные мультиплеты |
| 10.3. Пояс астероидов и пояс Койпера |
| 10.4. Хаотическая динамика планет-гигантов
|
ГЛАВА 11. Вековая динамика внутри резонансов средних движений |
| 11.1. Последовательное исключение гармоник |
| 11.2. Динамическая система с резонансами средних движений |
| 11.2.1.Вторичные резонансы |
| 11.2.2.Динамика Козаи |
| 11.2.3. Перигелийные вековые резонансы |
| 11.2.4.Узловые вековые резонансы |
| 11.2.5. Трехтельные резонансы |
| 11.3. Важнейшие резонансы в главном поясе астероидов |
| 11.3.1. Резонанс 3/1 |
| 11.3.2. Резонанс 2/1 |
| 11.3.3. Резонанс 3/2 |
| 11.4. Важнейшие резонансы в поясе Койпера |
| 11.4.1. Резонанс 2/3 |
| 11.4.2. Резонанс 1/2 |
| 11.5. Резонансы 1/1
|
ГЛАВА 12. Глобальная динамическая структура поясов малых тел |
| 12.1. Обнаружение хаотических зон |
| 12.2. Хаотическая диффузия и макроскопическая неустойчивость |
| 12.3. Аналитические оценки ляпуновского времени и времени ухода |
| 12.4. Применимы ли теоремы Колмогорова — Арнольда —Мозера и Нехорошева к динамике малых тел?
|
| А. Морбиделли, И.И.Шевченко. Douze ans apr`es. Заметки к русскому изданию
|
Литература
|
Алфавитный указатель |