URSS.ru Магазин научной книги
Обложка Стюарт Д.Е. Динамика систем с неравенствами: удары и жесткие связи Обложка Стюарт Д.Е. Динамика систем с неравенствами: удары и жесткие связи
Id: 174282
1155 р.

Динамика систем с неравенствами:
удары и жесткие связи

2013. 544 с.
  • Твердый переплет

Аннотация

В монографии представлено современное состояние теории систем с ограничениями в виде неравенств. Приложения этой теории включают динамику механическим систем с ударами и трением, диодные и транзисторные цепи, экономические и транспортные сети, биологические системы с ограничениями ресурсов и пр. Автор вводит понятие индекса системы, которое является ключом для определения математического аппарата, необходимого для ее исследования.... (Подробнее)


Содержание
top

Предисловие

ГЛАВА 1. Некоторые примеры

1.1. Механический удар

1.1.1. Мяч на столе

1.1.2. Более сложные системы твердых тел с ударом

1.1.3. Удар упругих тел

1.2. Кулоново трение

1.3. Диоды и транзисторы

1.3.1. Диодные цепи

1.3.2. Транзисторы с биполярным переходом

1.3.3. Линии передач с диодами

1.4. Очереди и ограничения ресурсов

1.4.1. Очереди

1.4.2. Транспортный поток

1.4.3. Ограничения биологических ресурсов

ГЛАВА 2. Статические задачи

2.1. Основные инструменты

2.1.1. Выпуклый анализ

2.1.2. Множественнозначные функции

2.1.3. Полунепрерывность сверху и замкнутость графика

2.1.4. Соображения измеримости

2.2. Проблемы дополнительности

2.2.1. Алгоритм Лемке

2.2.2. Метод Лемке и методы гомотопии

2.2.3. Многогранные конусы

2.2.4. Специальные структуры

2.2.5. Дополнительность в бесконечномерном случае

2.3. Вариационные неравенства

2.3.1. Вариационные неравенства второго рода

2.3.2. Эквивалентные формулировки

2.3.3. Оценки решений проблем дополнительности

2.3.4. Существование и единственность в конечномерном случае

2.3.5. Существование решений бесконечномерных проблем

2.3.6. Выпуклые функции и субдифференциалы

2.4. Максимальные монотонные операторы

2.4.1. Основные свойства

2.4.2. Дальнейшие примеры максимальных монотонных операторов

2.4.3. Суммы максимальных монотонных операторов

2.4.4. Вариационные неравенства и множители Лагранжа

2.5. Псевдомонотонные операторы

2.6. Проблема Синьорини

ГЛАВА 3. Формализмы

3.1. Дифференциальные вариационные неравенства

3.1.1. Обсуждение смысла понятий

3.2. Понятие индекса

3.2.1. Поведение решений

3.2.2. Проблемы индекса нуль

3.2.3. Проблемы единичного индекса

3.2.4. Проблемы индекса два

3.2.5. Индекс три и выше

3.3. Бесконечномерные проблемы

3.3.1. Тройки Гельфанда

3.3.2. Интерполяционные пространства в тройках Гельфанда

3.4. Леммы о дифференцировании

3.4.1. Леммы о дифференцировании для проблем дополнительности

3.4.2. Леммы о дифференцировании для вариационных неравенств

ГЛАВА 4. Вариации на тему

4.1. Дифференциальные неравенства

4.1.1. Множественнозначные интегралы

4.1.2. Интегральное и дифференциальное определения решений дифференциальных включений

4.1.3. Существование решений дифференциальных включений

4.1.4. Сравнение с дифференциальными вариационными неравенствами

4.2. Максимальные монотонные операторы и дифференциальные включения

4.2.1. Теория максимальных монотонных дифференциальных включений

4.2.2. Максимальные монотонные операторы и тройки Гельфанда

4.2.3. Приложения к уравнению теплопроводности и задачам с препятствиями

4.2.4. Единственность решений и максимальные монотонные операторы

4.3. Спроектированные динамические системы

4.4. Процессы выметания

4.4.1. Чистые процессы выметания

4.4.2. Дифференциальные включения для мер

4.4.3. Правило произведения Моро

4.4.4. ДВМ и разрывные процессы выметания

4.5. Линейные системы дополнительности

4.6. Конволюционные проблемы дополнительности

4.6.1. Конволюционные проблемы дополнительности индекса нуль

4.6.2. КПД индекса один

4.6.3. КПД индекса два и выше

4.6.4. Проблемы с дробным индексом

4.7. Параболические вариационные неравенства

4.7.1. Сравнение с максимальными монотонными дифференциальными включениями

4.7.2. Сравнение с дифференциальными вариационными неравенствами

ГЛАВА 5. Индекс нуль и индекс единица

5.1. Проблемы индексы нуль

5.1.1. Существование и единственность

5.1.2. Проблемы дополнительности индекса нуль

5.1.3. Нормальная податливость механического контакта

5.2. Проблемы индекса единица

5.2.1. ДВН чисто индекса единица

5.2.2. Единственность решения ДВН индекса единица

5.3. Конволюционные проблемы дополнительности

5.3.1. Существование решений КПД

5.3.2. Единственность решения КПД

5.4. Приложение: цепи с диодами

5.4.1. Получение дифференциальных уравнений для цепей

5.4.2. Включение диодов

5.4.3. Оценки на Zˆ(s) и индекс единица

5.4.4. Замена токов на напряжения

5.4.5. Сравнение с другими подходами

5.4.6. Что если H не является связным подграфом G?

5.4.7. Активные элементы и нелинейные цепи

5.5. Приложение: экономические сети

5.5.1. Транспортные сети

5.5.2. Динамическая транспортная модель

5.5.3. Существование

5.5.4. Единственность

ГЛАВА 6. Индекс два: задачи об ударе

6.1. Динамика твердых тел

6.1.1. Лагранжева формулировка механики

6.1.2. Задачи без трения

6.1.3. Кулоново трение

6.1.4. Моделирование частично упругого восстановления

6.1.5. Технические вопросы

6.1.6. Парадокс Пенлеве

6.1.7. Решение парадокса Пенлеве

6.1.8. Подходы к общей проблеме существования

6.1.9. Доказательство существования с кулоновым трением

6.1.10. Границы моделей твердого тела

6.2. Удар упругих тел

6.2.1. Формулировка условий контакта

6.2.2. Формулировка условий контакта двух тел

6.2.3. Технические вопросы

6.2.4. Стержень Рауса

6.2.5. Вибрирующая струна

6.2.6. Абстрактное рассмотрение одного класса упругих тел

6.2.7. Доказательство существования

6.2.8. Общие упругие тела

6.2.9. Волновое уравнение: существование вследствие компенсированной компактности

6.2.10. Волновое уравнение в полупространстве

6.3. Упругие тела

6.3.1. Удар без трения для вязкоупругих по Кельвину - Фойгту тел

6.3.2. Кулоново трение

ГЛАВА 7. Проблемы с дробным индексом

7.1. Дробное дифференцирование и интегрирование

7.2. Существование и единственность

7.3. Дальнейшие результаты о регулярности

7.4. Индекс между единицей и двумя

ГЛАВА 8. Численные методы

8.1. Выбор метода

8.1.1. Методы для гладких дифференциальных уравнений

8.2. Методы штрафов и редукции индекса

8.3. Кусочно-гладкие методы

8.3.1. Проблемы индекса нуль

8.3.2. Проблемы индекса единица

8.3.3. Переключение для проблем индекса нуль

8.3.4. Переключение для проблем индекса единица

8.3.5. Развитие алгоритма

8.4. Методы дискретизации времени

8.4.1. Методы Рунге - Кутты

8.4.2. Существование решений системы Рунге - Кутты

8.4.3. Порядок сходимости для гладких решений

8.4.4. Методы Рунге - Кутты на практике

ПРИЛОЖЕНИЕ A. Некоторые сведения из функционального анализа

A.1. Метрические пространства

A.2. Векторные и банаховы пространства

A.3. Сопряженные пространства, гильбертовы пространства и слабая сходимость

A.3.1. Сопряженный оператор

A.3.2. Слабая топология против сильной

A.3.3. Компактность в конкретных пространствах

A.4. Распределения и меры

A.5. Пространства Соболева и уравнения в частных производных

A.6. Принципы нелинейного анализа

ПРИЛОЖЕНИЕ B. Выпуклый и негладкий анализ

B.1. Выпуклые множества и функции

B.1.1. Опорные функции

B.1.2. Выпуклые проекции в гильбертовых пространствах

B.1.3. Выпуклые конусы

B.1.4. Касательные конусы и нормальные конусы

B.1.5. Существование точек минимума

B.2. Субдифференциалы и обобщенные градиенты

B.2.1. Двойственность по Фенхелю

B.2.2. Выпуклая оптимизация при наличии ограничений и условия ККТ

B.2.3. Инфимальная конволюция

B.2.4. Негладкий анализ: за пределами выпуклого анализа

ПРИЛОЖЕНИЕ C. Дифференциальные уравнения

C.1. Существование решений для липшицевых обыкновенных дифференциальных уравнений

C.2. Лемма Гронуолла и ее обобщения

C.3. Теорема существования Каратеодори для непрерывных обыкновенных дифференциальных уравнений

C.4. Преобразования Лапласа и Фурье

Примечания

Литература

Предметный указатель