Книга Фавара представляет собой курс лекций, посвященный основным вопросам дифференциальной геометрии. От большинства сочинений этого рода она отличается тем, что автор поставил себе задачу включить классическую локальную дифференциальную геометрию в круг идей, сыгравших значительную роль в развитии математики за последнее полустолетие. Мы имеем в виду в первую очередь идеи, связанные с теоретико-множественной и групповой точками зрения на вопросы математики. В дифференциальную геометрию эти идеи вошли, как известно, прежде всего через теорию римановых пространств и принцип относительности, затем через теорию непрерывных групп и метод Картана. Все это и отражено в настоящей книге, представляющей собой вместе с тем и учебник, в котором систематически излагаются вопросы локальной дифференциальной геометрии. Замысел книги оригинален, и его можно приветствовать. Следует отметить интересное и ясное изложение вводной части, особенно теории групп, как абстрактных, так и непрерывных. Однако не всегда автору удается сделать убедительной необходимость введения тех или иных понятий. Так, например, некоторые понятия топологии – размерность, канторово и обычное многообразие – в сущности остаются почти без приложений. Не вполне удались автору и некоторые главы, например глава о преобразованиях касания и глава о параметризации. Тяжеловато изложение методом Картана начал теории кривых и поверхностей как в эвклидовом, так и в аффинном случае, но зато сам метод на этом простом материале становится очень ясным и выпуклым. Оригинально написана глава об огибающих. Несмотря на указанные недостатки, книга написана очень интересно не только по замыслу, но и по выполнению. По ней можно научиться методу Картана и другим методам современной дифференциальной геометрии, она побуждает читателя к размышлениям об основах этой науки. Главы I и II введения, часть I, главы I и II первого раздела и главы I и II второго раздела части И, а также часть III перевела Ю. А.Рожанская; остальные главы перевел С. П.Фиников, С. П.Фиников
"Дифференциальная геометрия готова утонуть в океане выкладок", – сказал мне один из моих товарищей. "Когда открываешь книгу по математическому анализу, – сказал другой, – видишь много рисунков и не так уж много выкладок, когда же открываешь книгу по геометрии, наоборот, рисунков почти не находишь, бросаются в глаза" выкладки, поселяющие ужас среди наиболее усердных учащихся и приводящие в уныние профессиональных метематиков с не слишком акцентированными научными интересами. Не находится ли дифференциальная геометрия в состоянии упадка и не обязано ли нерасположение, которое некоторые к ней проявляют, тому, что она состарилась и что ее можно приукрасить лишь с помощью средств, столь же банальных, как румяна и драгоценности кокетки?" Лично я этого не думаю; скорее я вижу в геометрии кризис роста, вызванный слишком быстрым ее развитием после успехов теории относительности. Теперь, когда усиленное производство работ приостановилось, можно выбрать время, чтобы подумать об основаниях и довести до совершенства методы, перед тем как отправиться дальше по новым путям. Не говоря о глобальной дифференциальной геометрии, которая в части, соприкасающейся с алгебраической геометрией, сейчас находится в полном расцвете, в локальной дифференциальной геометрии в ее современном состоянии также имеется немало важных проблем, требующих решения; в ней имеются и курьезные пробелы – например, обычная кинематическая геометрия с числом параметров более двух до сих пор не получила своего развития, хотя, казалось бы, уже давно надо было заполнить этот пробел. Что же касается оснований дифференциальной геометрии, то о них едва-едва начали думать; я делаю здесь свой вклад в разработку этого вопроса, но он далеко еще недостаточный (например, с моей точки зрения, основания теории огибающих все еще неудовлетворительны). Как, скажут мне, в книге, претендующей на модернизацию преподавания, вы считаете нужным еще говорить о теории касания, об огибающих, о преобразованиях касания – словом, о таких старых вопросах? Да! Я излагаю здесь эти теории и имею слабость находить их важными даже сегодня; что касается первой из них, то я считаю ее даже основной, ибо что такое локальная дифференциальная геометрия, как не учение об элементах касания? Я не откажусь от моей точки зрения, пока мне не покажут, как можно преподавать анализ, не излагая или не предполагая известной "старую" теорию действительных чисел. Хотя во многих вопросах я решительно порвал с традициями, я все же старался сохранить переходный характер изложения, чтобы облегчить понимание многочисленных книг и работ, написанных в другом стиле. К сожалению, сейчас в дифференциальной геометрии нет единого, всеми принятого метода, необходимо выбирать один из многих; и я остановился на методе Эли Картана, который мне кажется наилучшим; я думаю, что этот метод позволит без большого труда объединить в более обширном трактате наиболее трудоемкие результаты дифференциальной геометрии, получаемые теперь ценою изнурительных выкладок, причем эти выкладки в большинстве случаев значительно сократятся. Мои намерения здесь более скромны – на пороге мирового кризиса, который готов охватить преподавание основ математики, я хотел бы внести свой вклад в дело сближения преподавания и научных исследований, и я полагаю, что прежде всего можно попытаться это сделать в дифференциальной геометрии, где отставание преподавания, пожалуй, менее велико, чем в анализе. Всегда опасно писать книги для преподавания, ибо критика таких книг особенно легка: обучать – значит выбирать, направлять, а это трудные искусства. Как сказано выше, я решил написать книгу переходного характера, которая, я надеюсь, может принести пользу. Кое-кто мне поставит в упрек, что я придаю слишком много значения классической геометрии; я мог бы перенести всю ее в упражнения после общей теории вложенных многообразий, которой заканчивается введение, но я решил, что это было бы преждевременно и даже чрезмерно. Другие, напротив, будут сожалеть о прекрасных страницах, которые некогда посвящались теории асимптотических линий и линий кривизны; я рассудил, что это – уже прошлое, но некоторые результаты в этом направлении включил в упражнения. Книга содержит введение, где первая глава (ее можно пропустить при первом чтении) посвящена основаниям; мне казалось, что требовательность в отношении аксиоматики, характерная для современных курсов анализа, должна в какой-то мере найти отзвук и в дифференциальной геометрии. Первая часть содержит, наряду с изложением классических вопросов прямой геометрии, существенные указания по проблемам параметризации. Во второй части, посвященной изложению эвклидовой, аффинной унимодулярной и проективной геометрий, я должен был, естественно, ограничивать себя, и, быть может, кое-кто найдет, что я отвел слишком много места метрической эвклидовой геометрии. В третьей части я излагаю теорию параллельного переноса в пространствах аффинной связности и римановых пространствах. Желая сделать книгу, для пользы учащихся, не очень объемистой, я должен был отказаться от мысли поместить в ней изложение теории гексагональной конфигурации (которая представляет интерес хотя бы для демонстрации того, что прямая геометрия не окаменела, как слишком часто думают), аффинной и проективной линейчатой геометрии, а также теории пространств Финслера и Кавагучи. Наоборот, повторения казались мне необходимыми, поэтому понятия параллельного переноса и ковариантной производной излагаются сначала при изучении линейного элемента ds2 поверхности, а потом повторяются с общей точки зрения в третьей части. Моя цель будет достигнута, если мне удастся зародить у читателя чувство неудовлетворенности, создать впечатление незаконченности, одновременно возбуждая интерес и любопытство, Я благодарю Декомба, ныне читающего университетский курс в Лилле, за помощь при редактировании старого литографированного издания этого курса, благодарю Деама и Хаддада, воспитанников Высшей Нормальной Школы, которые просмотрели рукопись курса, аббата Мирге и Гальвани, профессора университета в Гренобле, которые пожелали прочесть корректуры. Г.Жюлиа включил эту книгу в серию "Cahiers Scientifiques", которой он руководит, – я приношу ему здесь свою благодарность. Я признателен также издательству Готье-Вийар, которое осуществило издание и проявило обычное внимание к набору книги. Ж.Ф.
Жан ФАВАР (1902–1965) Французский математик. Профессор знаменитой Парижской политехнической школы. В 1946 г. был президентом Французского математического общества. Его основные труды относятся к теории функций действительной переменной (задача Фавара о покрытиях) и теории тригонометрических рядов. Работы Ж. Фавара, написанные в 1920–1940-х гг., оказали большое влияние на развитие теории функций и теории приближений. Его статьи неоднократно цитировались такими выдающимися отечественными математиками, как C. М. Никольский, С. Б. Стечкин и другие. |