Предисловие Глава I Психологический анализ действия умножения. В. В. Давыдов Традиционный способ обучения умножению О предметном содержании умножения Система учебных ситуаций по введению умножения Основные результаты обучения Глава II. О предметных источниках понятия дроби. В. В. Давыдов и Ж. Цветковш Место дробей в школьном курсе арифметики Особенности принятого способа ознакомления учащихся с дробями Исторические корни «наглядной концепции дроби» Измерение величин как предметный источник дроби Критика «наглядной концепции дроби» Введение понятия дроби на основе измерения величин (система учебных ситуаций) Основные результаты формирования понятия дроби на основе измерения величин Глава III. Особенности введения понятия об именованных числах в младших классах. Л. М. Фридман Роль именованных чисел в науке и в жизни, их место в начальном курсе математики Измерение величин Измерение величин и именованные числа в начальном курсе математики Первичные и вторичные величины. Действия над неоднородными именованными числами Глава IV. Психологические особенности решения задач с буквенными данными. Г. Г. Микулина Алгебраизация начальной математики и проблема уровня мышления младших школьников Трудности решения «косвенных» задач и их связь с общим
способом введения задач в обучении
Основные этапы экспериментального обучения
Глава V. Формирование обобщенных способов решения задач
Г. И. Минская
Проблема введения буквенных формул при решении текстовых задач
Особенности решения задач путем составления буквенных формул
Глава VI. Формирование алгебраического способа решения задач у младших школьников Ф. Г. Боданский
Проблема введения уравнений и современные представления о возрастных интеллектуальных возможностях младших школьников
Характеристика умственной деятельности учащихся при арифметическом и алгебраическом способах решения задач
Основные этапы формирования алгебраического способа
решения задач
Результаты обучения младших школьников алгебраическому способу решения задач
К вопросу об уровне умственного развития учащихся экспериментальных классов
Научная деятельность Л. М. Фридмана была сосредоточена в области педагогической психологии и психологических основ обучения математике. Автор более 250 публикаций, в том числе таких известных книг, как «Психолого-педагогические основы обучения математике в школе», «Логико-психологический анализ школьных учебных задач», «Педагогический опыт глазами психолога», «Как научиться решать задачи», «Учитесь учиться математике» (М.: URSS), «Психопедагогика общего образования», «Величины и числа. Популярные очерки» (М.: URSS), «Что такое математика» (М.: URSS) и многих других. |