URSS.ru - Editorial URSS, Moscú - Libros de Ciencia
Página principal Librería on-line Nuestra dirección Escríbanos
LIBROS EN LENGUAS EUROPEAS


 
Regresar a: Catálogo  
Encuadernación Boiarchuk A.K., Golovach G.P. AntiDemidóvich. Matemática superior. Problemas resueltos. Ecuaciones diferenciales: ecuaciones diferenciales de primer orden
Id: 7332
 
12.9 EUR

AntiDemidóvich. Matemática superior. Problemas resueltos. Ecuaciones diferenciales: ecuaciones diferenciales de primer orden. T.8

URSS. 256 pp. (Spanish). Rústica. ISBN 5-8360-0457-9.

 Resumen del libro

La colección "AntiDemidóvich" que proponemos al lector abarca casi todas las ramas de las matemáticas.

En ``Ecuaciones diferenciales'' se resuelven detalladamente casi ochocientos problemas de dificultad media o alta, y se proponen más de trescientos problemas como ejercicios de autocontrol (con sus respectivas soluciones). Cada sección va acompañada de un mínimo teórico estrictamente necesario para la resolución de los problemas correspodientes.

En este tomo, se estudian las ecuaciones diferenciales de primer orden; el tomo contiene 251 problemas detalladamente resueltos.


 Índice

Prólogo a "Ecuaciones diferenciales"
Introducción
1 Ecuaciones diferenciales de primer orden
 §1.Ecuaciones de variables separables
  1.1.Ecuaciones diferenciales de variables separables
  1.2.Separación de variables mediante un cambio lineal del argumento
 §2.Problemas geométricos y físicos que conducen a ecuaciones de variables separables
  2.1.Uso del significado geométrico de la derivada
  2.2.Uso del significado físico de la derivada
 §3.Ecuaciones homogéneas y ecuaciones reducibles a homogéneas
  3.1.Ecuaciones homogéneas
  3.2.Ejemplo de ecuación reducible a una ecuación homogénea
  3.3.Ecuación homogénea generalizada
 §4.Ecuaciones lineales y ecuaciones reducibles a lineales
  4.1.Ecuaciones lineales de primer orden
  4.2.Cambio de papeles entre la función y el argumento
  4.3.Ecuaciones reducibles a ecuaciones lineales
  4.4.Ecuación de Minding--Darboux
 §5.Ecuaciones diferenciales exactas. Factor integrante
  5.1.Ecuación diferencial exacta
  5.2.Factor integrante
  5.3.Ecuación diferencial para el factor integrante
 §6.Ecuación de Euler--Riccati
  6.1.Ecuación de Euler--Riccati. Ecuación especial de Riccati
  6.2.Ecuación canónica de Euler--Riccati
 §7.Ecuaciones no resueltas respecto a la derivada
  7.1.Ecuaciones no resueltas respecto a la derivada
  7.2.Integral general de la ecuación F(y')=0
  7.3.Representación de la solución en forma paramétrica. Resolución de ecuaciones incompletas
 §8.Existencia y unicidad de las soluciones
  8.1.Existencia y unicidad de la solución del problema de Cauchy. Teoremas de Picard, de Peano y de Osgood
  8.2.Existencia y unicidad de la solución del problema de Cauchy para una ecuación no resuelta respecto a la derivada
  8.3.Prolongación de la solución del problema de Cauchy
  8.4.Existencia y unicidad de la solución del problema vectorial de Cauchy
 §9.Soluciones singulares
  9.1.Solución singular. Curva discriminante
  9.2.Envolvente como solución singular
 §10.Problemas de trayectorias
  10.1.Trayectorias isógonas y ortogonales
  10.2.Evoluta y evolvente
Respuestas
Índice de materias

 Prólogo a "Ecuaciones diferenciales"

La intención de los autores al proponer a los lectores el presente libro es exponer una colección de problemas no triviales resueltos detalladamente, que sirvan de ayuda en el proceso de asimilación de la teoría de las ecuaciones diferenciales.

La singularidad del objeto de la teoría de ecuaciones diferenciales (el contenido abarcado y su fuerte relación con la teoría de límites y funciones, con el cálculo diferencial e integral, con la teoría de series y con otros campos de las matemáticas) determina lo específico de su método. El método de las ecuaciones diferenciales es, en esencia, el método del análisis matemático. Por esto, hay razones para afirmar que las ecuaciones diferenciales constituyen el desarrollo posterior, la generalización del análisis matemático a la clase de las funciones implícitas, definidas mediante ecuaciones que contienen la variable independiente, la función y sus derivadas. Así, podemos afirmar que el cálculo integral de funciones de una variable no es otra cosa que la teoría de la integración de la clase de ecuaciones diferenciales del tipo y'=f(x) mediante funciones elementales.

Cada parágrafo del libro está dotado del material teórico mínimo necesario para la resolución de los ejercicios correspondientes. Por otro lado, el libro contiene ejemplos que no son tradicionales en este tipo de guías, relacionados con la teoría de la prolongación de la solución del problema de Cauchy, las ecuaciones no lineales en derivadas parciales de primer orden, algunos métodos numéricos de resolución de ecuaciones diferenciales y la aplicación de los criterios de existencia de los ciclos límites en el plano fase. Todos los capítulos contienen ejercicios propuestos.

El libro contiene más de doscientos cincuenta ejercicios resueltos escrupulosamente.

El autor


 
© Editorial URSS 2016.