URSS.ru - Editorial URSS, Moscú - Libros de Ciencia
Página principal Librería on-line Nuestra dirección Escríbanos
LIBROS EN LENGUAS EUROPEAS


 
Regresar a: Catálogo  
Encuadernación Boss V. Lecciones de Matemática: Ecuaciones diferenciales
Id: 38789
 
14.9 EUR Bestseller!

Lecciones de Matemática: Ecuaciones diferenciales. T.2

URSS. 200 pp. (Spanish). Rústica. ISBN 978-5-396-00065-0.

 Resumen del libro

El presente libro se caracteriza por una exposición breve y clara de los temas tratados, valiéndose de analogías y sin entrar en detalles innecesarios. Se presta especial atención a la interrelación de los resultados y al enfoque general del material considerado.

Además de los temas tradicionales impartidos en los cursos de ecuaciones diferenciales, se estudian los atractores y el caos determinista, las bifurcaciones, las catástrofes, los solitones. La exposición de la teoría de la estabilidad se caracteriza por su sencillez y profundidad. En calidad de innovaciones se han introducido algunas notas breves sobre mecánica analítica, las bases de la teoría de control, los métodos cónicos y los modelos de comportamiento colectivo. Estos temas de "alto nivel" son analizados utilizando un lenguaje comprensible. Los capítulos son en cierta medida independientes, lo que ofrece la posibilidad, en caso de necesidad, de leerlos por separado.

Para estudiantes, profesores, ingenieros y científicos.


 Índice

Prólogo
1 Material preliminar
 1.1.Espacio n-dimensional
 1.2.Funciones lineales y matrices
 1.3.Matrices rectangulares
 1.4.Formas cuadráticas
 1.5.Normas en Rn
 1.6.Funciones y espacios
 1.7.Principio de contracción

I Fundamentos de la teoría

2 Visión general y puntos de apoyo
 2.1.Objeto de estudio
 2.2.Ecuaciones simples. Ejemplos
 2.3.Existencia y unicidad
 2.4.Prolongación y dependencia respecto a un parámetro
 2.5.Sobre la estructura y las direcciones
 2.6.Movimiento según el gradiente
 2.7.Ecuaciones en derivadas parciales
 2.8.Sobre las ecuaciones de primer orden
3 Ecuaciones lineales
 3.1.Nociones preliminares
 3.2.Principio de superposición
 3.3.Ecuaciones con coeficientes constantes
 3.4.Sistemas de ecuaciones
 3.5.Caso de raíces iguales
 3.6.Ecuaciones no homogéneas
 3.7.Exponencial de una matriz
 3.8.Teorema de Liouville
 3.9.Sistemas no autónomos
 3.10.Sobre las funciones generalizadas
 3.11.Función de Green y problemas de contorno
 3.12.Cálculo operacional
4 Estabilidad
 4.1.Conceptos fundamentales
 4.2.Segundo método de Liapunov
 4.3.Caso no autónomo
 4.4.Ecuaciones en variaciones
 4.5.Teoremas inversos
 4.6.Estabilidad global
 4.7.Sistemas disipativos
 4.8.Problema de Routh--Hurwitz
 4.9.Sistemas lineales no autónomos
5 Oscilaciones
 5.1.Señales armónicas
 5.2.Oscilaciones forzadas
 5.3.Resonancia
 5.4.Sistemas acoplados
 5.5.Autooscilaciones
 5.6.Péndulo no lineal
 5.7.Ondas y solitones
6 Perturbaciones y bifurcaciones
 6.1.Ejemplos y advertencias
 6.2.Bifurcaciones
 6.3.Catástrofes
 6.4.Estabilidad estructural
 6.5.Paradoja de Ziegler
 6.6.Métodos de promedios
7 Atractores y caos
 7.1.Ergodicidad y mezcla
 7.2.Eliminación de contradicciones
 7.3.Procesos adiabáticos
 7.4.Atractores y fractales
 7.5.Atractor extraño de Lorenz
 7.6.Lo complejo en lo simple

II Complementos y aplicaciones

8 Teoría de control
 8.1.Problemas prácticos y ejemplos
 8.2.Funciones de transferencia
 8.3.Ejemplo instructivo
 8.4.Métodos de frecuencia
 8.5.Problema de compensación
 8.6.Controlabilidad
9 Mecánica teórica
 9.1.Coordenadas generalizadas y fuerzas generalizadas
 9.2.Ecuaciones de Lagrange
 9.3.Formalismo de Hamilton
 9.4.Principios variacionales
 9.5.Invariante de Poincaré--Cartan
 9.6.Culminación del cuadro
10 Métodos cónicos
 10.1.Semiorden
 10.2.Monotonía del operador de desplazamiento
 10.3.Sistemas heterótonos
 10.4.Desigualdades diferenciales
 10.5.Superhomogeneidad
 10.6.Ejemplos
 10.7.Cono matricial
11 Comportamiento colectivo
 11.1.Ejemplos fundamentales
 11.2.Modelo formal
 11.3.Sistemas con interacción acotada
 11.4.Sistemas con interacción homogénea
Notaciones
Bibliografía
Índice de materias

 Prólogo

Existentres modos de responder a una pregunta: decir lo necesario, responder con amabilidad y decir más de lo que se debe.
Plutarco

El tiempo cambia la situación. Los cursos tradicionales de ecuaciones diferenciales pierden su vigencia, y no existe una solución simple de este problema. Por una parte, es evidente que se debe ampliar el material estudiado, de lo contrario los "árboles jóvenes" --el caos, los atractores, los solitones, etcétera-- estarán obligados a crecer "perforando el asfalto". Por otra parte, los cursos básicos deben ser considerablemente reducidos, ya que para las ecuaciones diferenciales no queda mucho tiempo en esta vida. La matemática discreta comienza a ocuparlo todo, los problemas virtuales... Sin hablar ya de la expansión del espacio jurídico y el sexual. En resumen, una cosa contradice a la otra y no tenemos patrones que nos ayuden a orientarnos.

La única solución es la trivialización de la asignatura. La matemática, al igual que las personas, a veces, se da aires de grandeza, se engalana y crea mitos. Por esta razón, en las ecuaciones diferenciales hay muchas cosas superfluas, rebuscadas, casuales. Es suficiente comenzar a poner las cosas en orden para encontrar espacio libre. Después es necesario analizar y hacer nuevos cálculos. Luego se deben eliminar los detalles de poca importancia. Pero claro está, no del todo. En los "cimientos" hay muchas cosas que estorban; ellas pueden y deben ser "sacadas del paréntesis". Finalmente, es hora de recordar que el éxito se logra sólo cuando se juega, cuando se obtiene placer. Quien aprende a hablar a la fuerza se queda mudo para toda la vida.

Así fue escrito este tomo, que, al igual que los demás de esta serie, está dirigido "a todos", ya que en él se exponen temas de interés general. Este tomo no es ni simple ni complejo, pero ofrece una idea de los fundamentos y permite, en caso de necesidad, moverse hacia adelante.


 Opiniones de los lectores de la serie

Para comprender una materia es necesario despo-jarla de los detalles, desnudar su estructura central, comprender cómo se llegó a la idea de uno u otro teorema. Éste es un trabajo arduo, y no siempre se dispone de las fuerzas y el tiempo necesarios para llevarlo a cabo. En los libros de la serie "Lecciones de Matemática", precisamente éste es el trabajo realizado por el autor.

La popularidad de los libros de V. Boss entre los estudiantes y el profesorado de Rusia es fácil de explicar. En sus libros se transmite lo que aún no se ha llegado a asimilar, lo que no se encuentra en otros libros: visión general, motivación e interreílación. Y lo más importante: la facilidad con la que se accede a cualquier tema.

El contenido de todos los libros ha sido planificado cuidadosamente. Los temas se entrelazan con una técnica impecable. Las demostraciones extensas han sido comprimidas hasta obtener unas pocas líneas de razonamientos matemáticos. Es difícil creer que una sola persona haya sido capaz de cumplir una tarea de tal envergadura: exponer toda la matemática en tan sólo 20 tomos de esta clase.

Las "Lecciones de Matemática" de V. Boss constituyen una excelente y muy completa colección. Como libros de texto, no siempre se adaptan a las normas pedagógicas tradicionales. Posiblemente sea esto lo que tanto atrae a los lectores.

* * *

La gran avalancha de información que nos abruma hoy hace que los instrumentos del ayer dejen de desempeñar su función. Por esta razón, es necesario aprender a estudiar de una nueva forma. La serie "Lecciones de Matemática" pretende ser un experimento en esta dirección. El tiempo será juez de si fue o no acertado. De todos modos, esta serie es un producto de nueva generación: las mismas "ruedas", el mismo "volante", el mismo contenido matemático... pero con un aspecto diferente.

V. Boss

* * *


Libros de la serie "Lecciones de Matemática" de V. Boss publicados ya en ruso:

1. Análisis. 2. Ecuaciones diferenciales. 3. Álgebra lineal. 4. Probabilidad. Información. Estadística. 5. Análisis funcional. 6. De Diofanto a Turing. 7. Optimización. 8. Teoría de grupos. 9. Funciones de variable compleja. 10. Búsqueda exhaustiva y algoritmos efectivos. 11. Ecuaciones de la física matemática. 12. Contraejemplos y paradojas. 13. Topología. 14. Teoría de números. 15. Operadores no lineales y puntos fijos


 
© Editorial URSS 2016.