URSS.ru - Editorial URSS, Moscú - Libros de Ciencia
Página principal Librería on-line Nuestra dirección Escríbanos
LIBROS EN LENGUAS EUROPEAS


 
Regresar a: Catálogo  
Encuadernación Krasnov M.L., Kiseliov A.I., Makárenko G.I., Shikin Ie.V., Zaliapin V.I. Curso de matemáticas superiores. Análisis matemático y cálculo diferencial e integral de funciones de una variable
Id: 11263
 
15.9 EUR Bestseller!

Curso de matemáticas superiores. Análisis matemático y cálculo diferencial e integral de funciones de una variable. T.2

URSS. 352 pp. (Spanish). Cartoné. ISBN 5-354-00456-X.

 Resumen del libro

El texto de estudio que proponemos al lector fue publicado por primera vez en dos tomos, en inglés y español en el año 1990, y posteriormente en francés.

En el año 1999 este libro fue premiado en el concurso Nuevos libros de texto organizado por el Ministerio de Educación de Rusia, con la consiguiente recomendación para ser utilizado como tal en todos los centros de educación superior.

La presente edición, ampliada y mejorada notablemente, abarca casi todas las ramas de la matemática. El segundo tomo incluye conjuntos de números y sucesiones numéricas, funciones de una variable (límite, continuidad, derivadas, diferenciales, teoremas del valor medio del cálculo diferencial, fórmula de Taylor), integral indefinida, integral definida e integrales impropias.

Todos los tomos de la serie contienen muchos ejemplos ilustrativos de los tópicos teóricos. Al final de cada capítulo se presenta un número suficientemente grande de ejercicios propuestos, acompañados de sus respectivas respuestas.


 Índice

Capítulo VII Conjuntos números. Sucesiones numéricas
 § 1.Conjuntos
 § 2.Números reales. Valor absoluto
 § 3.Eje numérico. Conjuntos elementales de números
 § 4.Supremo e ínfimo de un conjunto
 § 5.Símbolos lógicos. Proposiciones lógicas
 § 6.Sucesiones numéricas. Límite de una sucesión numérica
 § 7.Operaciones aritméticas con sucesiones convergentes
 § 8.Sucesiones monótonas
 § 9.El número e
 § 10.Números complejos. Operaciones con números complejos
  Ejercicios
  Respuestas
Capítulo VIII Límite y continuidad de las funciones de una variable
 § 1.Concepto de función. Formas de definir una función
 § 2.Límite de una función en un punto
 § 3.Teoremas de límites
 § 4.Límite de una función en el infinito
 § 5.Infinitésimos
 § 6.Operaciones aritméticas con límites
 § 7.Funciones infinitas. Relación con los infinitésimos
 § 8.Límites unilaterales de una funci ón en un punto
 § 9.Continuidad de una función
 § 10.Continuidad de las funciones elementales básicas
 § 11.Límites notables
 § 12.Operaciones con funciones continuas
 § 13.Puntos de discontinuidad de una función y su clasificaci ón
 § 14.Propiedades de las funciones continuas en un intervalo cerrado
 § 15.Comparación de infinitésimos
 § 16.Infinitésimos equivalentes
 § 17.Símbolos o y O (símbolos de Landau)
  Ejercicios
  Respuestas
Capítulo IX Derivadas y diferenciales de funciones de una variable
 § 1.Derivada
 § 2.Diferenciabilidad de una función. Diferencial de una función
 § 3.Derivación de sumas, productos y cocientes
 § 4.Derivadas de algunas funciones elementales básicas
 § 5.Derivación de una función compuesta
 § 6.Concepto de función inversa. Derivada de la función inversa
 § 7.Derivadas de las funciones hiperbólicas
 § 8.Derivación logarítmica
 § 9.Cálculos aproximados mediante diferenciales
 § 10.Derivadas de órdenes superiores
 § 11.Diferenciales de órdenes superiores
 § 12.Derivación de una función parametrizada
 § 13.Funciones vectoriales de argumento escalar
  Ejercicios
  Respuestas
Capítulo X Teoremas del valor medio del cálculo diferencial. Fórmula de Taylor
 § 1.Teoremas del valor medio
 § 2.Eliminación de indeterminaciones (regla de L'Hopital)
 § 3.Fórmula de Taylor
 § 4.Desarrollo de Maclaurin de algunas funciones elementales
 § 5.Estimación asintótica de las funciones elementales y cálculo de límites mediante la fórmula de Maclaurin
  Ejercicios
  Respuestas
Capítulo XI Investigación de funciones de una variable
 § 1.Criterios de crecimiento y decrecimiento de una función
 § 2.Extremos de una función
 § 3.Valores máximo y mínimo de una función continua en un intervalo cerrado
 § 4.Dirección de la convexidad y puntos de inflexión de una curva
 § 5.Asíntotas del gráfico de una función
 § 6.Esquema de construcción del gráfico de una función
 § 7.Investigación de los extremos de una función mediante las derivadas de orden superior
 § 8.Cálculo de raíces de ecuaciones por los métodos de las cuerdas y de las tangentes
  Ejercicios
  Respuestas
Capítulo XII Integral indefinida
 § 1.Concepto de primitiva
 § 2.Integral indefinida
 § 3.Propiedades de la integral indefinida
 § 4.Integrales inmediatas
 § 5.Integración por cambio de variables
 § 6.Integración por partes
 § 7.Integración de funciones racionales
 § 8.Integración de funciones irracionales
 § 9.Integración de algunas expresiones trigonométricas
  Ejercicios
  Respuestas
Capítulo XIII Integral definida
 § 1.Problemas que conducen al concepto de integral definida
 § 2.Concepto de integral definida
 § 3.Condiciones de integrabilidad de una función
 § 4.Propiedades de la integral definida
 § 5.Teorema del valor medio del cálculo integral
 § 6.Derivada de la integral respecto al límite superior
 § 7.Fórmula de Newton--Leibniz
 § 8.Cambio de variables en la integral definida
 § 9.Integración por partes
 § 10.Áreas de figuras planas en coordenadas rectangulares
 § 11.Áreas de figuras planas en coordenadas polares
 § 12.Cálculo de volúmenes de cuerpos
 § 13.Longitud de una curva
 § 14.Diferencial de longitud de un arco
 § 15.Aplicaciones de la integral definida a la física
 § 16.Cálculo aproximado de integrales definidas
  Ejercicios
  Respuestas
Capítulo XIV Integrales impropias
 § 1.Integrales con límites de integración infinitos
 § 2.Integrales de funciones no acotadas
  Ejercicios
  Respuestas
Apéndice Funciones elementales básicas
 § 1.Función potencial y=xalpha
 § 2.Función exponencial y=ax (a>0, a not= 1)
 § 3.Función logarítmica y=logax (a>0, a not= 1)
 § 4.Funciones trigonométricas
 § 5.Funciones trigonométricas inversas
 § 6.Funciones hiperbólicas
 Índice de materias

 
© Editorial URSS 2016.