URSS.ru - Editorial URSS Publishers. Moscow - Books on Science
About the Publishers On-line bookstore Our address Email us

Return to: Catalog
Cover � Moscow Journal of Combinatorics and Number Theory. 2012
Id: 166877
39.9 EUR

Moscow Journal of Combinatorics and Number Theory. 2012. Vol.2, Iss.2

URSS. 112 pp. (English). Paperback. ISBN 978-5-453-00036-4.
Hardcopy. If you buy this issue we can send also a pdf version of the issue free of charge
Moscow Journal оf Combinatorics and Number Theory. 2012, Vol.2, Iss.3

The aim of this journal is to publish original, high-quality research articles from a broad range of interests within combinatorics, number theory and allied areas. One volume of four issues is published annually.

1.Arithmetical Results on Certain q-Series, IVФайл в формате Adobe PDF
Peter Bundschuh (Köln), Keijo Väänänen (Oulu)
 1.Introduction and results
 2.Three lemmas
 3.Proof of Theorem 1
 4.Proof of Theorem 2
2.On Diophantine exponents and Khintchine's transference principleФайл в формате Adobe PDF
Oleg N.German (Moscow)
 1.History and main results
  1.1.Uniform exponents
  1.2.Regular exponents
  1.3.Transference theorem
  1.4.Arbitrary functions
 2.From Rn and Rm to Rn+m
 3.Determinants of orthogonal integer lattices
 4.Section-dual set
 5.Transference theorem
 6.The main lemma
 7.Proof of Theorem 6
 8.Proof of Theorem 5
 9.Special case n+m=3
3.Distance graphs with large chromatic number and arbitrary girthФайл в формате Adobe PDF
Andrey B. Kupavskii (Moscow)
  1.1.History and related problems
  1.2.Main Result
 2.Proof of Theorem 1
  2.2.Proof of Theorem 1
4.Positive integers: counterexample to W.M.Schmidt's conjectureФайл в формате Adobe PDF
Nikolay G.Moshchevitin (Moscow)
 2.Diophantine exponents
 3.The construction
 4.Linearly independent vectors
 5. Vectors dependent with mʋ, mʋ+1
 6.Proof of Theorem 1
 7. Fundamental Lemma: beginning of proof
 9.Fundamental Lemma: end of proof
5.The distribution of second degrees in the Bollobás--Riordan random graph modelФайл в формате Adobe PDF
Liudmila Ostroumova (Moscow), Evgeniy Grechnikov (Moscow)
 2.Definitions and results
  3.1.Proof of Theorem 4
  3.2.Proof of Theorem 2
  3.3.Proof of Lemma 1
  3.4.Proof of Lemma 2
  3.5.Proof of Theorem 3

© 2017 by Editorial URSS. All rights reserved.