URSS.ru - Издательская группа URSS. Научная и учебная литература
Об издательстве Интернет-магазин Контакты Оптовикам и библиотекам Вакансии Пишите нам
КНИГИ НА РУССКОМ ЯЗЫКЕ


 
Вернуться в: Каталог  
Обложка Переломов А.М. Интегрируемые системы классической механики и алгебры Ли
Id: 6202
 
699 руб.

Интегрируемые системы классической механики и алгебры Ли.

2002. 240 с. Мягкая обложка. ISBN 5-93972-118-4. Букинист. Состояние: 4+. .

 Аннотация

Посвящена одному из активно развивающихся направлений современной математической физики - теории интегрируемых систем классической механики. Подробно изложены как результаты и методы прошлого столетия, так и результаты, полученные в последние пятнадцать лет с помощью метода обратной задачи рассеяния. Детально рассмотрены многочастичные системы типа цепочки Тоды.

Для физиков-теоретиков и специалистов-математиков, а также для студентов математических вузов, факультетов университетов.

Содержание

Предисловие

Введение

Глава 1. Предварительные сведения

1.1. Простейший пример: движение в потенциальном поле

1.2. Пуассонова структура и гамильтоновы системы

1.3. Симплектичсские многообразия.

1.4. Однородные симплектические многообразия

1.5. Отображение момента

1.6. Гамильтоновы системы с симметриями

1.7. Редукция гамильтоновых систем с симметриями

1.8. Интегрируемые гамильтоновы системы

1.9. Метод проектирования.

1.10. Метод изоспектральной деформации

1.11. Гамильтоновы системы на орбитах коприсоединенного представления групп Ли

1.12. Конструкции гамильтоновых систем с большим числом интегралов движения

1.13. Полнота инволютивных семейств

1.14. Гамильтоновы системы и алгебраические кривые

Глава 2. Простейшие системы

2.1. Системы с одной степенью свободы.

2.2. Системы с двумя степенями свободы.

2.3. Разделение переменных

2.4. Системы, обладающие квадратичными интегралами движения

2.5. Движение в центральном поле

2.6. Системы с замкнутыми траекториями

2.7. Гармонический осциллятор.

2.8. Задача Кеплера.

2.9. Движение в ньютоновском и однородном поле

2.10. Движение в поле двух ньютоновских центров

Глава 3. Многочастичные системы

3.1. Представление Лакса для многочастичных систем .

3.2. Вполне интегрируемые многочастичныe системы.

3.3. Явное интегрирование уравнений движения для системы типа I и V с помощью метода проектирования.

3.4. Связь между решениями уравнений движения для систем типа I и V

3.5. Явное интегрирование уравнений движения для систем типа II и III

3.6. Интегрирование уравнений движения для систем с двумя типами частиц.

3.7. Многочастичные системы как редуцированные системы

3.8. Обобщение многочастичных систем типа I?III на случай системы корней произвольной попупростой алгебры Ли.

3.9. Полная интегрируемость систем раздела 3.8.

3.10. Анизотропный гармонический осциллятор в поле центрального потенциала четвертой степени (система Гарнье)

3.11. Семейство интегрируемых потенциалов четвертой степени, связанных с симметрическими пространствами.

Глава 4. Цепочка Tоды

4.1. Обычная цепочка Тоды. Представление Лакса. Полная интегрируемость.

4.2. Цепочка Тоды как динамическая система на орбите коприсоединенного представления группы треугольных матриц.

4.3. Явное интегрирование уравнений движения обычной непериодической цепочки Тоды

4.4. Цепочка Тоды как редуцированная система

4.5. Обобщенные непериодические цепочки Тоды, связанные с простыми алгебрами Ли

4.6. Системы типа Тоды на орбитах коприсоединенного представления борелевских подгрупп

4.7. Канонические координаты для систем типа Тоды

4.8. Интегрируемость систем типа Тоды на орбитах общего положения

Глава 5. Разное

5.1. Равновесные конфигурации и малые колебания некоторых динамических систем.

5.2. Движение полюсов нелинейных эволюционных уравнений и связанные с этим интьч-рирусмые многочастичные системы

5.3. Движение нулей линейных дифференциальных уравнений в частных производных и связанные с этим интегрируемые многочасткчные системы

5.4. Разноe

Приложение A

Пример компактного симплектического многообразия, не являющегося кэлеровым

Приложение Б

Решение функционального уравнения (3-1.9)

Список литературы

 
© URSS 2016.

Информация о Продавце