URSS.ru - Издательская группа URSS. Научная и учебная литература
Об издательстве Интернет-магазин Контакты Оптовикам и библиотекам Вакансии Пишите нам
КНИГИ НА РУССКОМ ЯЗЫКЕ


 
Вернуться в: Каталог  
Обложка Рид М. Алгебраическая геометрия для всех. Пер. с англ.
Id: 61910
 

Алгебраическая геометрия для всех. Пер. с англ.

1991. 152 с. Мягкая обложка. ISBN 5-03-001792-5. Букинист. Состояние: 4+. Погашенная библиотечная печать.
Обращаем Ваше внимание, что книги с пометкой "Предварительный заказ!" невозможно купить сразу. Если такие книги содержатся в Вашем заказе, их цена и стоимость доставки не учитываются в общей стоимости заказа. В течение 1-3 дней по электронной почте или СМС мы уточним наличие этих книг или отсутствие возможности их приобретения и сообщим окончательную стоимость заказа.

 Аннотация

Автор, известный английский математик, поставил себе целью преодолеть страх математиков перед алгебраической геометрией, подобный страху нематематиков перед математикой. Примеры, задачи, рисунки и мотивировки занимают в книге больше места, чем формальный аппарат теории. Автор осторожно доводит читателя до содержательных результатов теории проективных алгебраических многообразий и оставляет его после критического обсуждения обобщений и обоснований (пучки, схемы и т. п.). Секреты специалистов, обычно сообщаемые лишь ученикам наедине, опубликованы здесь в открытую.

Для математиков всех специальностей от студентов-младшекурсников до алгебраических геометров, а также физиков-теоретиков.


 Оглавление

Предисловие к русскому переводу

Предисловие

§ 0. Неформальное введение

Почему же алгебраическая геометрия? Проблема выбора материала; различные геометрические категории, необходимость привлечения коммутативной алгебры, частично определенная функция; репутация автора. Необходимые предварительные сведения, взаимоотношение курса с различными предметами, список рекомендуемых книг

Гл. 1. Поиграем с плоскими кривыми

§ 1. Плоские коники

Общее представление о Р2 и однородных координатах; соотношение между А2 и Р2; параметризация. Каждая гладкая коника в Р2 изоморфна Р1. Простые случаи теоремы Безу: прямая пересекает кривую степени d в d точках, коника пересекает кривую степени d в 2d точках. Линейная система коник, проходящих через точки Pi,..., Рn

§ 2. Кубики и групповой закон

Кривая (у2 = х(х - )(х - X)) не может быть рационально параметризована. Линейные системы Sd(Pi,..., Рn); пучок кубик, проходящих через 8 точек «в общем положении». Групповой закон на кубике. «Таинственная» гексаграмма Паскаля

Добавление к гл. 1. Кривые и их род

Топология неособых плоских комплексных кубик. Неформальное обсуждение рода кривой: топология, дифференциальная геометрия, модули, теория чисел, Морделл---Вейль---Фальтингс

Гл. 2. Категория аффинных многообразий

§ 3. Аффинные многообразия и Nullstellensatz

Нётеровы кольца, теорема Гильберта о базисе; соответствия V и I, неприводимые алгебраические множества, топология Зарисского, формулировка Nullstellensatz. Неприводимая гиперповерхность. Нормализация Нётер и доказательство Nullstellensatz; редукция к случаю гиперповерхности

§ 4. Функции на многообразиях

Координатное кольцо и полиномиальные отображения, морфиз-мы и изоморфизмы, аффинные многообразия. Поле рациональных функций и рациональные отображения, доминантные рациональные отображения и композиция рациональных отображений. Стандартные открытые множества. Закон сложения на эллиптической кривой является морфизмом.

Гл. 3. Приложения

§ 5. Проективная и бирациональная геометрии

Мотивировка: существуют многообразия, не содержащиеся ни в каком аффинном многообразии. Однородные соответствия V и I. Проективное и аффинное. Примеры: квадратичные поверхности, поверхность Веронезе. Бирациональная эквивалентность, рациональные многообразия. Каждое многообразие бирационально эквивалентно гиперповерхности. Произведения

§ 6. Касательное пространство и неособость, размерность

Мотивировка: теорема о неявной функции, многообразия и гладкие многообразия. Определение аффинного касательного пространства. Множество неособых точек является плотным. Касательное пространство и т/т1, инвариантное определение касательного пространства. Размерность X равна tr degkK(Х). Разрешение особенностей с помощью раздутий

§ 7. 27 прямых на кубической поверхности

Прямые на неособой кубической поверхности S. Доказательство существования прямой методом исключения. Пять пар прямых, пересекающих данную прямую. S рациональна. Классическая конфигурация из 27 прямых. Гессиан. Случай, когда все прямые рациональны

§ 8. Заключительные комментарии

История и социологический аспект. Выбор тем, высоконаучные комментарии и технические замечания. Вместо предисловия. Благодарности

Предметный указатель

 
© URSS 2016.

Информация о Продавце