URSS.ru - Издательская группа URSS. Научная и учебная литература
Об издательстве Интернет-магазин Контакты Оптовикам и библиотекам Вакансии Пишите нам
КНИГИ НА РУССКОМ ЯЗЫКЕ


 
Вернуться в: Каталог  
Обложка Александров П.С. Что такое неэвклидова геометрия
Id: 39460
 
110 руб.

Что такое неэвклидова геометрия. Изд.2

URSS. 2006. 72 с. Мягкая обложка. ISBN 5-484-00633-3. Уценка. Состояние: 5-. Блок текста: 5. Обложка: 4+.

 Аннотация

В настоящей книге, написанной выдающимся математиком, академиком П.С.Александровым (1896--1982), излагаются основы неэвклидовой геометрии. Цель автора --- ввести читателя в главные, наиболее принципиальные идеи неэвклидовой геометрии и представить эти идеи в возможно компактной форме и в тесной связи с другими геометрическими идеями (прежде всего с проективной геометрией, а также с задачей обоснования геометрии).

Книга предназначена в первую очередь учителям средних школ и ученикам старших классов, но может быть интересна широкому кругу математически подготовленных читателей, желающих ознакомиться с идеями неэвклидовой геометрии.


 Содержание

Предисловие
I. Аксиомы параллельных Эвклида и Лобачевского
II. Система аксиом геометрии. Первые три группы аксиом
III. Связь аксиом конгруэнтности с понятием движения
IV. Система аксиом геометрии (продолжение). Аксиомы непрерывности, аксиомы параллельных
V. Непротиворечивость эвклидовой геометрии. Проективная геометрия. Построение первой модели геометрии Лобачевского
VI. Исследование первой модели геометрии Лобачевского
VII. Измерение углов на плоскости Лобачевского. Вторая модель (Пуанкаре) плоскости Лобачевского. Сумма углов в треугольнике
VIII. Преобразования подобия. Эллиптическая геометрия
IX. Поверхности постоянной кривизны. Псевдосфера

 Предисловие

Посвящается памяти моего учителя Александра Романовича Эйгеса

Эта маленькая книга представляет собою второе лишь немного видоизмененное, издание моей статьи, опубликованной под тем же названием в сборнике "Николай Иванович Лобачевский", изданном в 1943 г. Государственным издательством технико-теоретической литературы к 150-летию со дня рождения великого геометра и состоящем из трех статей (кроме переиздаваемой ныне статьи, в сборник входила еще составленная мною же статья биографического характера и статья А.Н.Колмогорова "Лобачевский и математическое мышление девятнадцатого века").

Предлагаемая вниманию читателя в отдельном издании статья моя не является даже и кратким учебником неэвклидовой геометрии и не претендует заменить имеющиеся в русской литературе систематические изложения этой дисциплины. Моя цель совсем другая: я стремлюсь лишь ввести читателя в основные наиболее принципиальные идеи неэвклидовой геометрии и представить эти идеи в возможно компактной форме и в возможно тесной связи с другими геометрическими идеями (прежде всего с проективной геометрией, а также, конечно, и с задачей обоснования геометрии). Я начинаю с изложения общепринятой в настоящее время аксиоматики эвклидовой геометрии, ввожу при этом в связи с аксиомами конгруэнтности понятие движения и заканчиваю эту часть книжки аксиомой параллельных Эвклида и Лобачевского. При этом дается много образцов доказательства теорем элементарной геометрии, однако, при малом объеме книги, я, естественно, не мог ставить себе задачи полного построения системы элементарной геометрии со всеми доказательствами, отправляясь от аксиом и определений; решение этой задачи означало бы написание нового курса оснований геометрии, что я не имел и не мог иметь в виду.

Вторая часть книги посвящена в основном построению и исследованию двух моделей геометрии Лобачевского (модель Клейна и модель Пуанкаре) и получающемуся из этого исследования доказательству непротиворечивости названной геометрии. Изложение здесь ведется с привлечением основных понятий проективной геометрии в их аналитической форме. Этим подготавливается почва и для того, чтобы в третьей, последней, части книги ввести читателя и во вторую неэвклидову геометрию -- в геометрию эллиптической плоскости, что, в свою очередь, через посредство сферической геометрии, подводит нас к вопросу о дифференциально-геометрической реализации неэвклидовой геометрии. Изложение, которое я стремился вести с наибольшей наглядностью, содержит, как мне кажется, достаточно доказательств, чтобы удовлетворить естественную любознательность читателя и в отношении логики всего построения, но все же некоторые точно сформулированные геометрические факты приводятся без доказательств.

Я представлял себе в основном два круга читателей этой книги. Во-первых, наше учительство, во-вторых, ученики старших классов средней школы, обладающие специальным интересом и способностями к математике. Учителя наши в своем большинстве окончили педагогический институт и, следовательно, изучили в свое время тот или иной курс оснований геометрии, быть может, сейчас уже несколько позабытый. Предлагаемая их вниманию книга, как я надеюсь, напомнит им основное содержание этого курса, не загроможденное деталями, и прямой дорогой введет их в круг основных идей неэвклидовой геометрии.

Но я считаю, что понять эти идеи можно и не изучив никакого курса оснований геометрии, и именно эта моя уверенность и позволяет мне иметь в виду и учащихся старших классов средней школы. Я думаю, что те из них, для которых геометрия является любимым предметом, в состоянии будут увлечься грандиозными геометрическими идеями Лобачевского и с пользой смогут прочитать значительную часть этой книги. О себе могу в связи с этим сказать, что впервые познакомился с идеями неэвклидовой геометрии, будучи учеником средних классов гимназии, со слов моего учителя А.Р.Эйгеса, памяти которого и посвящаю эту книжку. Основные концепции геометрии Лобачевского в талантливом изложении А.Р.Эйгеса настолько увлекли меня, что заставили меня выбрать математику как будущую специальность. Я надеюсь, что для молодых людей, впервые знакомящихся по этой книге с геометрическими понятиями и идеями, выходящими за пределы школьного курса математики, чтение ее послужит побуждением к более глубокому изучению неэвклидовой геометрии (например, к изучению соответствующих глав прекрасной книги Н.В.Ефимова "Высшая геометрия" или книги "Основания геометрии" В.И.Костина).

Замечу, наконец, что читателю рекомендуется попробовать самому восстановить пропущенные в тексте доказательства теорем; во многих случаях (особенно в применении к теоремам первых глав) это ему удастся.

Болшево, Комаровка, 8 июня 1950.

 Об авторе

Павел Сергеевич Александров (1896--1982)

Выдающийся ученый-математик, создатель отечественной топологической школы, получившей мировое признание. Родился в 1896 г. в Богородске (ныне Ногинск). Окончил Московский государственный университет в 1917 г. Доцент МГУ с 1921  г., профессор с 1929 г. В том же году был избран членом-корреспондентом АН СССР, а в 1953 г. -- академиком. В 1932--1964 гг. был президентом Московского математического общества.

П.С.Александров ввел ряд фундаментальных понятий и конструкций топологии, создал теорию существенных отображений и гомологическую теорию размерности, основал и развил теорию компактных и бикомпактных пространств. Он также получил много значительных результатов в области теории множеств, теории функций действительного переменного. Среди его учеников -- такие известные математики, как академики АН СССР Л.С.Понтрягин и А.Н.Тихонов, академик АН Грузинской ССР Г.С.Чогошвили.

 
© URSS 2016.

Информация о Продавце