Обложка Ефимов Н.В. Квадратичные формы и матрицы. Общая теория линий второго порядка. Общая теория поверхностей второго порядка. Линейные преобразования и матрицы
Id: 271080
314 руб. Новинка недели!

КВАДРАТИЧНЫЕ ФОРМЫ И МАТРИЦЫ.
Общая теория ЛИНИЙ второго порядка. Общая теория ПОВЕРХНОСТЕЙ второго порядка. Линейные ПРЕОБРАЗОВАНИЯ И МАТРИЦЫ Изд. 8
Квадратичные формы и матрицы. Общая теория линий второго порядка. Общая теория поверхностей второго порядка. Линейные преобразования и матрицы

Аннотация

Книга является дополнением книги автора «Краткий курс аналитической геометрии». Она начинается с приведения к каноническому виду общего уравнения линий 2-го порядка, затем рассматривается приведение к каноническому виду общего уравнения поверхностей 2-го порядка и заканчивается изучением линейных преобразований и матриц. На каждом шаге теории все объясняется и вычисляется таким образом, что студенту очень просто понять важность и функции ...(Подробнее)каждого этапа. Для преподавателей, аспирантов и студентов, изучающих углубленный курс высшей алгебры и геометрии.


Об авторе
Ефимов Николай Владимирович
Выдающийся советский математик, член-корреспондент АН СССР. Родился в Оренбурге. Учился в Северо-Кавказском государственном университете (ныне Южный федеральный университет) и аспирантуре Московского государственного университета; его учителями были известные математики Д. Д. Мордухай-Болтовской, Я. С. Дубнов, В. Ф. Каган, уехавший из нацистской Германии в СССР Стефан Кон-Фоссен. В 1934–1941 гг. работал в Воронежском университете (с 1940 г. — профессор), в 1941–1943 гг. — в Воронежском авиационном институте. В 1943–1962 гг. работал заведующим кафедрой математики в Московском лесотехническом институте. В 1946–1956 гг. — профессор кафедры математики физического факультета МГУ. В 1957–1982 гг. заведовал кафедрой математического анализа механико-математического факультета МГУ; в 1962–1969 гг. был деканом факультета. Член редколлегии «Математической энциклопедии». Лауреат Ленинской премии и премии имени Н. И. Лобачевского.

В область научных интересов Н. В. Ефимова входили дифференциальная геометрия и прикладная математика. Основные его труды относятся к геометрии и посвящены, в частности, теории деформации поверхностей и теории поверхностей отрицательной кривизны. Он исследовал изгибание куска поверхности вблизи точки уплощения и показал, что существуют аналитические поверхности, неизгибаемые ни в какой окрестности такой точки. Им была решена обобщенная проблема Гильберта о поверхностях, имеющих во всех точках отрицательную гауссову кривизну; получено обобщение на произвольные поверхности с отрицательной верхней границей на кривизну теоремы Гильберта о погружении плоскости Лобачевского. В теории уравнений с частными производными он разработал метод исследования нелинейных гиперболических систем. Он создал и возглавил московскую школу геометров, занятую разработкой вопросов геометрии «в целом».