КНИГИ НА РУССКОМ ЯЗЫКЕ


 
Обложка Арнольд В.И. Лекции об уравнениях с частными производными
Id: 234506
 
189 руб.

Лекции об уравнениях с частными производными

2017. 184 с. Мягкая обложка. ISBN 978-5-4439-1174-8.

Данный курс был разработан и прочитан выдающимся математиком В.И. Арнольдом в Независимом московском университете. Помимо традиционных вопросов курса уравнений с частными производными (метод Даламбера, метод Фурье, краевые задачи и т.д.) автор уделяет большое внимание взаимодействию с другими областями математики: геометрией и топологией многообразий, симплектической и контактной геометрией, комплексным анализом, вариационным исчислением.

Книга предназначена для студентов и аспирантов математических факультетов университетов и вузов с расширенной программой по математике


Об авторе
Арнольд Владимир Игоревич
Выдающийся математик, академик АН СССР (РАН). Родился в Одессе, в семье известного математика и методиста И. В. Арнольда. В 1959 г. окончил механико-математический факультет Московского государственного университета имени М. В. Ломоносова. Доктор физико-математических наук (1963). До 1987 г. работал в университете; с 1965 г. — профессор. С 1986 г. работал в Математическом институте им. В. А. Стеклова. В 1990 г. был избран действительным членом Академии наук СССР (с 1991 г. — Российская академия наук). Президент Московского математического общества (1996). Член многочисленных иностранных академий и научных обществ, лауреат многих отечественных и зарубежных премий в области математики, обладатель ряда почетных докторских степеней в зарубежных университетах.

В. И. Арнольд — автор работ в области топологии, теории дифференциальных уравнений, теории особенностей гладких отображений, функционального анализа, теоретической механики, теории динамических систем, теории катастроф. В 20 лет, будучи учеником выдающегося советского математика А. Н. Колмогорова, он показал, что любая непрерывная функция нескольких переменных может быть представлена в виде комбинации конечного числа функций от двух переменных, тем самым решив тринадцатую проблему Гильберта (1957). Он был одним из создателей теории Колмогорова—Арнольда—Мозера (КАМ-теории), ветви теории динамических систем, изучающей малые возмущения почти периодической динамики в гамильтоновых системах и родственных им случаях. Автор десятков теорем, лемм, гипотез, задач и т. д., применимых в самых разных областях математики; основатель большой научной школы. Многие из его учебников и монографий были неоднократно переизданы и переведены на различные языки мира.