URSS.ru - Издательская группа URSS. Научная и учебная литература
Об издательстве Интернет-магазин Контакты Оптовикам и библиотекам Вакансии Пишите нам
КНИГИ НА РУССКОМ ЯЗЫКЕ


 
Вернуться в: Каталог  
Обложка Буфеев С.В., Буфеев И.С. Основы математической логики и теории множеств
Id: 200094
 
199 руб.

Основы математической логики и теории множеств. Изд.стереотип.

URSS. 2015. 144 с. Мягкая обложка. ISBN 978-5-9710-2187-2.

 Аннотация

В пособии представлены учебно-методические материалы по логике и теории множеств, включенные в лекционный курс, читаемый в течение ряда лет учащимся 10-х классов физико-математического лицея при МГТУ им. Н.Э.Баумана. Излагаются основные понятия логики высказываний и предикатов и основные понятия теории множеств, отражена тесная взаимосвязь этих разделов математики. Для улучшения понимания и запоминания изложение теории сопровождается многочисленными примерами и упражнениями.

Настоящее пособие предназначено для старшеклассников --- учащихся физико-математических лицеев и подготовительных курсов; также может представлять интерес для студентов младших курсов университетов и преподавателей.


 ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ

I. ЛОГИКА ВЫСКАЗЫВАНИЙ

§1. Высказывания и операции над ними

1.1 Высказывания

1.2 Операции над высказываниями

§2. Алгебра логики

2.1 Логические формулы. Логические законы

2.2 Тавтологические равносильности

2.3 Тавтологические импликации.

Правила вывода

2.4 Алгебра логики.

Логические (булевы) функции

2.5 Переключательные схемы

2.6 Нормальные формы

2.7. Полиномы Жегалкина

2.8 Полные системы функций.

Стрелка Пирса. Штрих Шеффера

2.9 Алгебра логики как средство

решения логических задач

II. ОСНОВНЫЕ ПОНЯТИЯ

ТЕОРИИ МНОЖЕСТВ

§3. Множества и операции над ними

3.1. Множество

3.2. Способы задания множеств

3.3. Основные операции над множествами

3.4. Диаграммы Эйлера--Венна

3.5. Формула включений и исключений

§4. Алгебра множеств

4.1. Формулы алгебры множеств

4.2. Связь теории множеств

и логики высказываний

§5. Числовые множества

5.1 Множество натуральных чисел.

Метод математической индукции

5.2 Множество целых чисел. Делимость.

Сравнение по модулю. НОД и НОК.

Решение уравнений в целых числах

5.3 Множество рациональных чисел

5.4 Множество действительных чисел

III. ЛОГИКА ПРЕДИКАТОВ

§6. Предикаты и операции над ними

6.1. Предикаты

6.2. Операции над предикатами

§7. Кванторы

7.1. Кванторы общности и существования

7.2. Правило проноса отрицания

7.3. Сравнимость простых суждений

7.4. Логический квадрат

§8. Логическая структура

математической теоремы

IV. ОТОБРАЖЕНИЯ МНОЖЕСТВ

§9. Соответствия

9.1. Декартово произведение

9.2. Соответствие

§10. Отношения

10.1. Отношение

10.2. Основные типы отношений.

10.3. Отношение эквивалентности

10.4. Отношение порядка

§11. Отображения (функции)

11.1. Классификация соответствий

11.2. Отображение (функция)

11.3. Сюръекция, инъекция, биекция.

11.4. Принцип Дирихле

Литература

Примерные вопросы к коллоквиуму

Примерные задачи к коллоквиуму


 Введение

Логика -- наука о законах и формах правильного мышления. Она возникла в глубокой древности из потребности ответа на вопрос: как нужно рассуждать так, чтобы получать правильные выводы. При этом подразумевается, что сама правильность рассуждения не зависит от конкретного содержания входящих в него утверждений, но определяется лишь его структурой.

<...>

Бурное развитие математической логики связано, прежде всего, с задачами обоснования математики, где она используется для доказательства непротиворечивости исходных понятий и правиль­ности рассуждений и выводов математических теорий. Некоторые учёные даже склонны рассматривать логику как одну из наиболее общих наук, частью которой является сама математика.

В последние десятилетия логика находит все более широкое применение в технике при исследовании и разработке микросхем, компьютеров, дискретных автоматов. Её методы используются в теории преобразования и передачи ин­формации, теории вероятностей и комбинаторном анализе. Матема­тическая логика начинает внедряться в такие нематематические области, как экономика, биология, медицина, психология, языко­знание, право. Интенсивно развиваются специальные разделы математической логики, призванные обслуживать конкретные об­ласти науки и техники.

Столь энергичный выход математической логики за пределы математики объясняется тем, что её аппарат легко распространяется на объекты самой общей природы, лишь бы только они характери­зовались конечным числом состояний.

Двузначная логика имеет дело с такими объектами, которые при­нимают одно из двух возможных значений (истинное или ложное высказывание, намагниченная или размагниченная ячейка памяти винчестера в компьютере, наличие или от­сутствие заданного признака у объекта и т.п.). Объекты, которые могут принимать значения из конечного множества, содержащего больше двух элементов, называют многозначными Они либо сво­дятся каким-нибудь способом к двузначным объектам, либо обслу­живаются аппаратом многозначной логики. В биологической математике применяется четырёхзначная логика для описания кодов и кодонов в генах.

Устоявшееся представление о математической логике как науке, изучающей законы мышления с применением аппарата математики, главным образом, для нужд самой математики, в современных усло­виях становится слишком узким. С расширением областей приме­нения и дальнейшим развитием математической логики изменяется и взгляд на неё Объектами математической логики являются любые дискретные конечные системы, а её главная задача -- структурное моделирование таких систем.


 Об авторах

Сергей Валентинович БУФЕЕВ

Старший преподаватель МГТУ имени Н. Э. Баумана, преподаватель математики лицея № 1580 и Подготовительных курсов при МГТУ, член редколлегии журнала «Математика в школе». Победитель конкурсов лучших учителей РФ, победитель профессионального конкурса "Учитель года Москвы", обладатель грантов Москвы, победитель творческих конкурсов учителей математики. Автор дистанционного учебного курса подготовки к ЕГЭ в онлайн-школе издательского дома «Учительская газета», а также более 50 научно-методических публикаций, в том числе нескольких учебных пособий.

Иван Сергеевич БУФЕЕВ

Выпускник математического факультета МПГУ имени Н.Э. Баумана, учитель математики и информатики, системный администратор, .NET-разработчик.

 
© URSS 2016.

Информация о Продавце