URSS.ru - Издательская группа URSS. Научная и учебная литература
Об издательстве Интернет-магазин Контакты Оптовикам и библиотекам Вакансии Пишите нам
КНИГИ НА РУССКОМ ЯЗЫКЕ


 
Вернуться в: Каталог  
Обложка Дарбу Ж.Г. Избранное по механике
Id: 169250
 

Избранное по механике

2012. 256 с. Твердый переплет. ISBN 978-5-4344-0060-2.
Обращаем Ваше внимание, что книги с пометкой "Предварительный заказ!" невозможно купить сразу. Если такие книги содержатся в Вашем заказе, их цена и стоимость доставки не учитываются в общей стоимости заказа. В течение 1-3 дней по электронной почте или СМС мы уточним наличие этих книг или отсутствие возможности их приобретения и сообщим окончательную стоимость заказа.

 Аннотация

Сборник состоит из избранных работ знаменитого французского математика и механика Жана Гастона Дарбу. Для перевода были отобраны наиболее интересные работы Дарбу по различным разделам механики и некоторым смежным вопросам.


 Содержание

Предисловие

I. О системах ортогональных поверхностей (C. R. Acad. Sci., 1868)

II. О столкновении тел (C. R. Acad. Sci., 1874)

III. О применении методов математической физики к исследованию тел, ограниченных циклидами (C. R. Acad. Sci., 1876)

IV. Исследование закона, которому должна подчиняться центральная сила, чтобы определяемая ею траектория всегда была кривой второго порядка (C. R. Acad. Sci., 1877, продолжение)

V. Исследование закона, которому должна подчиняться центральная сила, чтобы определяемая ею траектория всегда была кривой второго порядка (продолжение)

VI. Об одном вопросе, связанном с движением точки по поверхности вращения (Bulletin de la S. M. F., 1877)

VII. О задаче Пфаффа (C. R. Acad. Sci., 1882)

VIII. О геодезических эллипсоида (Cours de mécanique, Note VI, 1884)

IX. Одна задача механики (Cours de mécanique, Note VII, 1884)

X. О брахистохроне, соответствующей материальной точке, имеющей вес (Cours de mécanique, Note X, 1884)

XI. Об одном частном виде силовой функции, указанном Якоби (Cours de mécanique, Note XI, 1884)

XII. О законах Кеплера (Cours de mécanique, Note XII, 1884)

XIII. О таутохронизме с учетом трения (Cours de mécanique, Note XIII, 1884)

XIV. Об одной задаче, связанной с теорией центральных сил (Cours de mécanique, Note XIV, 1884)

XV. Об одном вопросе, связанном с движением точки по поверхности вращения (Cours de mécanique, Note XV, 1884)

XVI. Обобщение теоремы Айвори, связанное с притяжением эллипсоидов (Cours de mécanique, Note XVI, 1884)

XVII. О герполодии и о некоторых предложениях, связанных с теорией Пуансо (Cours de mécanique, Note XVII, 1884)

XVIII. О теории Пуансо и о двух разных движениях, соответствующих одной и той же полодии (Cours de mécanique, Note XVIII, 1884)

XIX. Геометрическое исследование ударов и столкновений тел (Cours de mécanique, Note XXI, 1884)

XX. О поверхностях с положительной постоянной кривизной (C. R. Acad. Sci., 1899)

XXI. О применении фундаментальной теоремы Абеля об алгебраических интегралах к исследованию полностью ортогональных систем в n-мерном пространстве (Acta Math., 1902)

ДОПОЛНЕНИЯ

I. Г. Дарбу. О жизни Софуса Ли

II. Г. Дарбу. Анри Пуанкаре

III. Д. Гильберт. Гастон Дарбу (1842-1917)

IV. А. М.Ляпунов. Гастон Дарбу (1842-1917). Некролог


 Об авторе

Жан Гастон Дарбу (1842--1917)

Выдающийся французский математик, член Парижской академии наук (1884), ее секретарь (с 1900 г.), член-корреспондент Петербургской академии наук (1895). Родился в Ниме. В 1864 г. окончил Высшую нормальную школу в Париже. Занимал должность профессора математики в Коллеж де Франс. С 1873 г. работал в Сорбонне.

Основные труды Г.Дарбу посвящены дифференциальной геометрии и дифференциальным уравнениям. В дифференциальной геометрии им получено много важных результатов, относящихся к теории поверхностей и теории криволинейных координат. Эти результаты были изложены в многотомных "Лекциях по общей теории поверхностей" (1887--1896) и в "Лекциях об ортогональных системах и криволинейных координатах" (1898). Геометрические исследования привели Дарбу к рассмотрению различных вопросов интегрирования дифференциальных уравнений. В теории обыкновенных дифференциальных уравнений он изучил уравнения 1-го порядка, уравнения, интегрируемые с помощью найденных в достаточном количестве частных решений, и уравнения, интегрируемые алгебраически. В теории определенных интегралов имя Дарбу носят верхний и нижний интегралы, верхняя и нижняя суммы. Он также получил важные результаты в теории аналитических функций, плодотворно занимался вопросами кинематики, равновесия, малых колебаний систем точек.

 
© URSS 2016.

Информация о Продавце