URSS.ru - Издательская группа URSS. Научная и учебная литература
Об издательстве Интернет-магазин Контакты Оптовикам и библиотекам Вакансии Пишите нам
КНИГИ НА РУССКОМ ЯЗЫКЕ


 
Вернуться в: Каталог  
Обложка Миротин А.Р. Функциональный анализ: Мера и интеграл
Id: 166356
 
197 руб.

Функциональный анализ: Мера и интеграл. Изд.2

URSS. 2013. 160 с. Мягкая обложка. ISBN 978-5-397-03736-5.

 Аннотация

Учебное пособие написано в соответствии с программами курса "Функциональный анализ и интегральные уравнения" и содержит основные понятия и теоремы теории меры и интеграла Лебега.

Предназначено для студентов математических специальностей университетов.


 Оглавление

ПРЕДИСЛОВИЕ
ВВЕДЕНИЕ
1 ЭЛЕМЕНТЫ ТЕОРИИ МНОЖЕСТВ
 1.1Множества, отношения и отображения
 1.2Счетные и несчетные множества
 1.3Дополнительные упражнения к главе 1
2 ЭЛЕМЕНТЫ ТЕОРИИ МЕРЫ
 2.1Системы множеств
 2.2Меры. Свойства мер
 2.3Продолжение мер
 2.4Меры Лебега и Лебега-Стилтьеса на прямой
 2.5Дополнительные упражнения к главе 2
3 ИНТЕГРАЛ ЛЕБЕГА
 3.1Измеримые функции
 3.2Интеграл Лебега
  3.2.1Интегрирование неотрицательных простых функций
  3.2.2Интегрирование неотрицательных измеримых функций
  3.2.3Интегрирование знакопеременных измеримых функций
 3.3Предельный переход под знаком интеграла Лебега
 3.4Сравнение интеграла Лебега с интегралом Римана
 3.5Интеграл Стилтьеса
 3.6Замена переменной в интеграле Лебега
 3.7Пространства Lp
 3.8Знакопеременные меры и теорема Радона-Никодима
 3.9Теория дифференцирования Лебега
 3.10Произведение мер и теорема Фубини
 3.11Дополнительные упражнения к главе 3
СПИСОК ВСЕХ УПРАЖНЕНИЙ
ОТВЕТЫ И УКАЗАНИЯ
ПРИМЕРНЫЙ ПЕРЕЧЕНЬ ВОПРОСОВ
ЛИТЕРАТУРА
ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ

 ПРЕДИСЛОВИЕ

Данный текст представляет собой расширенную запись семестрового курса лекций по функциональному анализу и интегральным уравнениям, который на протяжении ряда лет автор читает на математическом факультете ГГУ им.Ф.Скорины. Традиционно этот курс в ГГУ начинается в четвертом семестре и содержит теорию меры и интеграла Лебега (обслуживающую не только анализ, но и теорию вероятностей и математическую статистику), а также элементы того, что раньше не совсем удачно называлось теорией функций действительного переменного. Лекции охватывают весь материал по теме Теория меры и интеграл Лебега, предусмотренный образовательными стандартами Республики Беларусь и учебными программами для высших учебных заведений по специальностям 1--31 03 01 Математика и 1--31 03 03 Прикладная математика. Цель предлагаемых текстов лекций -- обеспечить студентов учебным пособием, по которому было бы удобно готовиться к экзамену (включая контролируемую самостоятельную работу).

Особенности настоящего курса сводятся в основном к следующему.

Из трех возможных подходов к построению лебеговского продолжения меры (по Лебегу, по Колмогорову и по Каратеодори) в лекциях выбран последний (два других подхода отражены в учебниках [1] и [7] соответственно). Хотя на первый взгляд он и не выглядит так естественно, как подход Колмогорова, но технически более прост, позволяет сразу рассматривать неограниченные меры и не требует сигма-конечности меры. Известные автору книги на русском языке, использующие этот подход, либо являются монографиями, непригодными в качестве учебников, либо трудны для первоначального знакомства с предметом. В интересной монографии К.Партасарати [10], например, теория Лебега излагается вперемешку с теорией вероятностей, и рассчитана эта книга на студентов старших курсов, аспирантов и научных работников.

При построении теории интеграла используются конечнозначные простые функции. Хотя это и приводит к небольшому усложнению доказательства теоремы об аппроксимации измеримых функций простыми, но дает выигрыш в других вопросах. Интеграл от неотрицательной функции определяется как предел ее интегральных сумм Лебега (понимаемых как интегралы от аппроксимирующей ее монотонной последовательности простых функций, построенной при доказательстве теоремы об аппроксимации). Теорема Радона--Никодима выводится из теоремы Ф.Рисса об общем виде линейного функционала. Теорема Фубини--Тонелли доказывается с помощью теоремы о монотонных классах. Доказательство теоремы Лебега о дифференцировании проводится с использованием максимальной функции Харди--Литтлвуда. Из других особенностей изложения отметим (возможно, новое) доказательство теоремы Жордана--Хана о разложении знакопеременной меры, основанное на лемме Цорна, а также включение материала, выходящего за рамки типовой программы, а именно, посвященного свертке, единственности инвариантной меры на числовой оси, интегралу Хенстока--Курцвейля, свойствам интеграла Лебега, зависящего от параметра. Этот материал непосредственно примыкает к основному и может быть использован при составлении заданий для курсовых работ студентам, специализирующимся в области математического анализа.

 Изложение в лекциях сопровождается довольно значительным числом упражнений (как правило, легких), выполнение большинства из которых необходимо для неформального усвоения материала. Каждая глава заканчивается списком дополнительных упражнений. В конце пособия помещен список всех упражнений, которым можно пользоваться, как задачником. Упражнения, отмеченные знаком *, снабжены ответами и указаниями, также помещенными в конце пособия. Дополнительный (необязательный) материал выделен знаками *. Внутри каждой главы формулы имеют двойную нумерацию, например, (2.1) обозначает первую формулу параграфа 2; теоремы, леммы и т.д. нумеруются раздельно по параграфам. Знак := читается равняется по определению; конец доказательства обозначается знаком [].

Профессор Ю.В.Малинковский прочитал рукопись и сделал несколько интересных замечаний, за что автор выражает ему искреннюю благодарность. Особая благодарность рецензентам -- члену-корреспонденту НАН РБ Я.В.Радыно и кафедре теории функций, функционального анализа и прикладной математики учреждения образования "Гродненский государственный университет им.Я.Купалы" (заведующий кафедрой -- профессор Ю.М.Вувуникян) -- за советы, способствовавшие улучшению рукописи.


 Об авторе

Адольф Рувимович МИРОТИН (род. в 1952 г.)

Доктор физико-математических наук, профессор, заведующий кафедрой математического анализа Гомельского государственного университета имени Ф.Скорины. Окончил Гомельский государственный университет и аспирантуру МГУ имени М.В.Ломоносова.

Научные интересы лежат в области абстрактного гармонического анализа и теории операторов.

 
© URSS 2016.

Информация о Продавце