URSS.ru - Издательская группа URSS. Научная и учебная литература
Об издательстве Интернет-магазин Контакты Оптовикам и библиотекам Вакансии Пишите нам
КНИГИ НА РУССКОМ ЯЗЫКЕ


 
Вернуться в: Каталог  
Обложка Арнольд В.И. Гюйгенс и Барроу, Ньютон и Гук - первые шаги математического анализа и теории катастроф, от эвольвент до квазикристаллов
Id: 16000
 
299 руб.

Гюйгенс и Барроу, Ньютон и Гук - первые шаги математического анализа и теории катастроф, от эвольвент до квазикристаллов.

1989. 96 с. Мягкая обложка. ISBN 5-02-013935-1. Букинист. Состояние: 4+. Есть погашенная библиотечная печать.

 Аннотация

В книге, написанной на основе лекции для студентов, посвящённой трёхсотлетию «Математических начал натуральной философии» Ньютона, рассказывается о рождении современной математики и теоретической физики в трудах великих учёных XVII века. Некоторые идеи Гюйгенса и Ньютона опередили своё время на несколько столетий и получили развитие только в последние годы. Об этих идеях, включая несколько новых результатов, также рассказано в книге.

Для студентов и преподавателей вузов, учителей математики средней школы и историков науки.


 Об авторе

Арнольд Владимир Игоревич
Выдающийся математик, академик АН СССР (РАН). Родился в Одессе, в семье известного математика и методиста И. В. Арнольда. В 1959 г. окончил механико-математический факультет Московского государственного университета имени М. В. Ломоносова. Доктор физико-математических наук (1963). До 1987 г. работал в университете; с 1965 г. — профессор. С 1986 г. работал в Математическом институте им. В. А. Стеклова. В 1990 г. был избран действительным членом Академии наук СССР (с 1991 г. — Российская академия наук). Президент Московского математического общества (1996). Член многочисленных иностранных академий и научных обществ, лауреат многих отечественных и зарубежных премий в области математики, обладатель ряда почетных докторских степеней в зарубежных университетах.

В. И. Арнольд — автор работ в области топологии, теории дифференциальных уравнений, теории особенностей гладких отображений, функционального анализа, теоретической механики, теории динамических систем, теории катастроф. В 20 лет, будучи учеником выдающегося советского математика А. Н. Колмогорова, он показал, что любая непрерывная функция нескольких переменных может быть представлена в виде комбинации конечного числа функций от двух переменных, тем самым решив тринадцатую проблему Гильберта (1957). Он был одним из создателей теории Колмогорова—Арнольда—Мозера (КАМ-теории), ветви теории динамических систем, изучающей малые возмущения почти периодической динамики в гамильтоновых системах и родственных им случаях. Автор десятков теорем, лемм, гипотез, задач и т. д., применимых в самых разных областях математики; основатель большой научной школы. Многие из его учебников и монографий были неоднократно переизданы и переведены на различные языки мира.

 
© URSS 2016.

Информация о Продавце