URSS.ru - Издательская группа URSS. Научная и учебная литература
Об издательстве Интернет-магазин Контакты Оптовикам и библиотекам Вакансии Пишите нам
КНИГИ НА РУССКОМ ЯЗЫКЕ


 
Вернуться в: Каталог  
Обложка Понтрягин Л.С. Анализ бесконечно малых
Id: 122251
 
255 руб.

Анализ бесконечно малых. Изд.3

URSS. 2011. 256 с. Мягкая обложка. ISBN 978-5-354-01372-2.

 Аннотация

Предлагаемая читателю книга выдающегося отечественного математика, академика АН СССР Л.С.Понтягина (1908--1988) посвящена изложению некоторых вопросов математического анализа. Хотя изложение в ней не является легким, она задумана как книга, доступная молодым читателям, увлекающимся математикой. Ее характерной чертой является дновременное изложение теории функций действительного и комплексного переменного.


 Оглавление

Предисловие
Введение
Глава I. Ряды
 § 1.Сходящиеся последовательности чисел
 § 2.Бесконечно малые величины
 § 3.Условия сходимости Коши
 § 4.Применение признака сходимости Коши
 § 5.Сходящиеся ряды
 § 6.Абсолютно сходящиеся ряды
 § 7.Функция ехр(z)
 § 8.Основные трансцендентные функции
 § 9.Степенные ряды
Глава II. Дифференциальное исчисление
 § 10.Производная
 § 11.Вычисление производных
 § 12.Неопределенный интеграл
 § 13.Вычисление некоторых неопределенных интегралов
 § 14.Определенный интеграл
 § 15.Ряд Тейлора
Глава III. Интегральное исчисление
 § 16.Определенный интеграл как площадь
 § 17.Определенный интеграл как предел последовательности конечных сумм
 § 18.Площадь и длина графика
 § 19.Длина параметрически заданной линии
Глава IV. Аналитические функции
 § 20.Интегрирование функций комплексного переменного
 § 21.Теорема Коши
 § 22.Ряды Тейлора и Лорана
 § 23.Вычеты
 § 24.Нахождение обратной функции
 § 25.Целые функции и особые точки

 Предисловие

Предлагаемая книжка является второй из серии четырех небольших сравнительно популярных книг, издаваемых мною под общим заглавием "Знакомство с высшей математикой". Первая книжка "Метод координат" уже вышла в 1977 году. Эта вторая книжка посвящена изложению основных фактов математического анализа.

Изложение ведется так, чтобы всюду, где это возможно, одновременно рассматривать как действительный, так и комплексный случай. В первую очередь это относится к определению сходимости последовательностей и рядов, в частности степенных рядов. Точно так же определение производной дается одновременно для функций действительного и комплексного переменного, так как формально оно одинаково для обоих случаев. Понятие первообразной функции определяется одинаково как для функции действительного переменного, так и для функции комплексного переменного. Одновременно доказывается единственность первообразной с точностью до постоянного слагаемого. Такой способ изложения дает возможность сравнительно легко включить в книгу основные результаты теории функций комплексного переменного, что составляет ее четвертую главу. Эта глава является важнейшей завершающей частью книги и доведена до таких сравнительно сложных результатов, как ряд Лорана и поведение функции вблизи изолированной особой точки.

Те вопросы анализа, которые составляют так называемую теорию функций действительного переменного, я стараюсь отодвинуть на задний план, считая их наименее интересными. Я не свел их вместе, а разбросал по всей книжке, излагая там, где в них возникает необходимость.

Центральное место в первой главе занимает изучение функции exp(z) комплексного переменного 2, которая задается степенным рядом

exp(z)=l+ z/1+z2/1x2 +... +zn/n+... (1)

Доказывается, что при действительном значении z = х мы имеем равенство

exp(x) = еx,

а для чисто мнимого значения r = iy имеется формула

exp (iy) = cos у + i sin у.

Таким образом, не пользуясь дифференциальным исчислением, мы сразу получаем разложение основных трансцендентных функций ех, cos у, sin у в степенные ряды.

Нужно обратить внимание на следующее обстоятельство. Когда мы доказываем, что некоторая как-либо заданная функция разлагается в степенной ряд, то для этого достаточно доказать, что ряд сходится к некоторому определенному числу -- значению функции. Если же мы хотим определить саму функцию при помощи ряда (см. (1)), то для этого нужно доказать, что ряд сходится, для чего необходимо использовать признак сходимости Коши и дать точное определение числа. Весь этот аппарат излагается в первой главе.

Глава II посвящена изложению основных результатов дифференциального исчисления. Прежде всего определяется производная одновременно как для функции действительного переменного, так и для функции комплексного переменного и вводится понятие интегрирования как операции, обратной к операции дифференцирования. Завершением главы является доказательство формулы Тейлора с остаточным членом в интегральной форме.

Глава III посвящена интегральному исчислению. В ней интеграл определяется сперва интуитивно, как величина площади, ограниченной графиком, и доказывается, что так определенный интеграл является первообразной для функции, задающей график.

Далее весьма четко и тщательно интеграл определяется как предел последовательности конечных сумм.

Таково в основном содержание книги.

Введение распадается на две части, В первой части напоминаются некоторые простейшие понятия, которые можно почерпнуть из книжки "Метод координат". Во второй части "Историческая справка" дается очень краткое и неполное описание истории развития математического анализа. Для чтения предлагаемой книги нет необходимости иметь законченное среднее математическое образование. Некоторые употребляемые здесь важнейшие формулы элементарной математики -- сумма геометрической прогрессии, бином Ньютона -- в книге доказаны, так что она может быть доступна и старшим школьникам, но книга не является легким чтением и требует значительной математической культуры. Надеюсь, что она может послужить также противоядием при "отравлении" теорией множеств. В последнее время теоретико-множественная идеология усердно внедряется в программу и учебники средней школы. Авторы этого внедрения утверждают, что теория множеств важна для научно-технического прогресса и является новейшим достижением математики. В действительности теория множеств не имеет ничего общего с научно-техническим прогрессом и не является новейшим достижением математики. Теоретико-множественная идеология приводит, например, к таким уродствам, как замена термина "равенство" геометрических фигур термином "конгруэнтность" и определение вектора как "параллельный сдвиг пространства".

В заключение я выражаю благодарность В.Р.Телеснину за помощь, оказанную при написании и редактировании книги, а также официальному рецензенту издательства Е.М.Никишину за его многочисленные замечания, значительную часть которых я использовал.


 Об авторе

Лев Семенович Понтрягин (1908--1988)

Выдающийся российский математик, академик АН СССР, Герой Социалистического Труда (1969). Родился 3 сентября 1908 г. в Москве. В 14 лет потерял зрение в результате несчастного случая. Окончил Московский государственный университет им.М.В.Ломоносова (1929). С 1930 г. работал в Московском университете, где в 1935 г. получил ученое звание профессора, и одновременно с 1939 г. занимал должность заведующего отделом Математического института им.В.А.Стеклова АН СССР.

Основные работы Л.С.Понтрягина относятся к теории дифференциальных уравнений, топологии, теории колебаний, теории управления, вариационному исчислению, алгебре. В топологии он открыл общий закон двойственности и в связи с этим построил теорию характеров непрерывных групп; получил ряд результатов в теории гомотопий (классы Понтрягина). В теории колебаний главные результаты работ Л.С.Понтрягина относятся к асимптотике релаксационных колебаний. В теории управления он выступил как создатель математической теории оптимальных процессов, в основе которой лежит так называемый принцип максимума Понтрягина. Ему принадлежат также существенные результаты в области вариационного исчисления, дифференциальных игр, теории размерности, теории регулирования. Работы школы Л.С.Понтрягина оказали большое влияние на развитие теории управления и вариационного исчисления во всем мире.

 
© URSS 2016.

Информация о Продавце