URSS.ru - Издательская группа URSS. Научная и учебная литература
Об издательстве Интернет-магазин Контакты Оптовикам и библиотекам Вакансии Пишите нам
КНИГИ НА РУССКОМ ЯЗЫКЕ


 
Вернуться в: Каталог  
Обложка Бакушинский А.Б., Гончарский А.В. Итеративные методы решения некорректных задач
Id: 101177
 
899 руб.

Итеративные методы решения некорректных задач

1989. 128 с. Мягкая обложка. ISBN 5-02-013960-2. Букинист. Состояние: 4+. Есть погашенная библиотечная печать.

 Аннотация

Итеративные методы --- один из наиболее универсальных инструментов вычислительной математики. Рассматриваются итерационные алгоритмы решения некорректных задач на компактных множествах. Изложены методы итеративной регуляризации. Получаемые итерационные процессы позволяют также существенно расширить возможности стандартных алгоритмов решения классических задач математического анализа.

Для специалистов в области вычислительной математики.


 Оглавление

Предисловие

Введение

Глава I. ОСНОВНЫЕ ПОНЯТИЯ ТЕОРИИ РЕГУЛЯРИЗАЦИИ

§ 1. Корректные и некорректные задачи. Регуляризирующий алгоритм

§ 2. Регуляризируемые и нерегуляризируемые. отображения. Принципы построения регуляризирующего алгоритма

§ 3. Оценки погрешности приближенного метода решения некорректной задачи

§ 4. Оптимальные и квазиоптимапьные методы

§ 5. Регуляризирующие алгоритмы на компактных множествах

Комментарии к главе I

Глава II. ЛИНЕЙНЫЕ АППРОКСИМАЦИИ И РЕГУЛЯРИЗИРУЮЩИЕ АЛГОРИТМЫ ДЛЯ ЛИНЕЙНЫХ ОПЕРАТОРНЫХ УРАВНЕНИЙ

§ 1. Общая схема построения аппроксимаций и регуляризирующих алгоритмов в гильбертовом пространстве

§ 2. Оценки погрешности, даваемые линейными аппроксимациями. Оптимальные алгоритмы

§ 3. Регуляризация при возмущении оператора

§ 4. Асимптотический обобщенный принцип невязки

§ 5. Построение линейных аппроксимирующих семейств и регуляризирующих алгоритмов в банаховом пространстве

§ 6. Аппроксимация и регуляризация решений линейных задач в условиях

стохастических помех

Комментарии к главе II

Глава III. ИТЕРАТИВНЫЕ МЕТОДЫ ПРИБЛИЖЕННОГО РЕШЕНИЯ НЕЛИНЕЙНЫХ НЕКОРРЕКТНЫХ ЗАДАЧ

§ 1. Основные сведения из теории вариационных неравенств

§ 2. Аппроксимация Браудера - Тихонова решений вариационных неравенств

§ 3. Принцип итеративной регуляризации

§ 4. Итеративная регуляризация на основе базовых методов нулевого порядка

§ 5. Итеративная регуляризация базовых методов типа Ньютона

§ 6. Итерационные регуляризирующие алгоритмы

§ 7. Оценки скорости сходимости аппроксимаций итеративной регуляризации

Комментарии к главе III

Глава IV. ИТЕРАТИВНЫЕ МЕТОДЫ РЕШЕНИЯ ТИПИЧНЫХ КЛАССОВ НЕЛИНЕЙНЫХ НЕКОРРЕКТНЫХ ЗАДАЧ

§ 1. Алгоритмы минимизации. Решение нелинейных уравнений

§ 2. Минимизация квадратичных функционалов. Нелинейные процессы решения линейных задач

§ 3. Итеративные алгоритмы решения общих задач математического программирования

§ 4. Нахождение седловых точек и точек равновесия в играх с помощью

принципа итеративной регуляризации

Комментарии к главе IV

Глава V. ОПЫТ ПРИМЕНЕНИЯ ИТЕРАТИВНЫХ РЕГУЛЯРИЗИРУЮЩИХ АЛГОРИТМОВ В РЕШЕНИИ ПРИКЛАДНЫХ ЗАДАЧ

§ 1. Некорректные задачи обработки теле-и фотоизображений

§ 2. О решении одной обратной задачи гравиметрии

§ 3. Задачи линейного программирования

Комментарии к главе V

Список литературы


 Об авторе

Бакушинский А.Б.
Доктор физико-математических наук, главный научный сотрудник Института системного анализа РАН (г. Москва). Известный ученый в области численных методов нелинейного анализа и их приложений, автор монографий по методам решения некорректных задач.
 
© URSS 2016.

Информация о Продавце